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Executive Summary 

 
Flight delay is a serious and widespread problem in the United States. Increasing flight delays 
place a significant strain on the US air travel system and cost airlines, passengers, and society at 
many billions of dollars each year. While a number of previous studies have attempted to estimate 
the total economic impact of delays, scientific knowledge about the cost of delay is still limited. 
The Federal Aviation Administration sponsored the five NEXTOR universities and the Brattle 
Group to conduct a comprehensive study on the total delay impact (TDI) in the United States. 

This report analyzes a variety of cost components caused by flight delays, including cost to 
airlines, cost to passengers, cost of lost demand, as well as the indirect impact of delay on the US 
economy. This study offers a broader consideration of relevant costs than conventional cost-of-
delay estimates, and employs several innovative methodologies for assessing the magnitudes of 
these costs. Of particular note are the passenger delay cost estimates, which recognize that flight 
cancellations and missed connections can lead to substantial passenger delays not revealed in 
traditional flight delay statistics. 

The TDI project team estimates that the total cost of all US air transportation delays in 2007 was 
$32.9 billion. The $8.3 billion airline component consists of increased expenses for crew, fuel, 
and maintenance, among others. The $16.7 billion passenger component is based on the 
passenger time lost due to schedule buffer, delayed flights, flight cancellations, and missed 
connections. The $3.9 billion cost from lost demand is an estimate of the welfare loss incurred by 
passengers who avoid air travel as the result of delays.  

In addition to these direct costs imposed on the airline industry and its customers, flight delays 
have indirect effects on the US economy. Specifically, inefficiency in the air transportation sector 
increases the cost of doing business for other sectors, making the associated businesses less 
productive. The impact here is subtle, however. For example, the airline industry would actually 
employ fewer people as it becomes more efficient. The overall impact, of course, would be 
positive. The TDI team estimates that air transportation delays reduced the 2007 US GDP by $4 
billion.  

 

Table 0-1: Direct cost of air transportation delay in 2007 

Cost Component  Cost 
($ billions) 

Costs to Airlines 8.3 

Costs to Passengers 16.7 

Costs from Lost Demand 3.9 

Total Direct Cost 28.9 

Impact on GDP 4.0 

Total Cost 32.9 
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Certainly, some flight delays are unavoidable and are not the result of airspace congestion. For 
example, delays could be caused by mechanical problems or problems boarding passengers. Even 
if ample aviation infrastructure is provided, operational uncertainty still exists and flights can be 
delayed if safety issues arise due to severe weather or other causes. Absent major policy changes, 
most decisions about how capacity is used are made by users, not the Air Navigation Service 
Provider (ANSP). Not all delays can or should be eliminated. Nonetheless, this study provides a 
frame of reference for decision makers to assess the magnitude of the flight delay problem and 
the need for initiatives to address it. In this regard, it similar to other studies that attempt to 
measure the size of a problem, such as air pollution, motor accidents, or crime, while recognizing 
that the problem cannot be entirely eliminated.  

One can certainly expect that new aviation technologies and procedures, including those 
associated with the Next Generation Air Transportation System (NextGen), coupled with 
appropriate government policies and infrastructure investments, have the potential to reduce the 
identified costs by a very large percentage. One should also keep in mind that the air 
transportation system seeks a new equilibrium any time new capacity is provided. A very large 
capacity increase could reduce the majority of the delays identified in this report assuming the 
demand (in terms of number of operations) placed on the system remained constant. However, 
the flight operators would no doubt react to such capacity increases and change their service 
offerings. The new equilibrium the system would reach is very difficult to predict. The gains from 
NEXTGEN and other aviation infrastructure investments will be greatest is they are combined 
with policy innovations, such as pricing NAS resources and services to encourage their more 
efficient use, setting realistic caps at airports, and so on. This will ensure the most effective use of 
new capacity in order to reduce flight delay and its associated cost, by reducing problems that 
arise from the externalization of delay costs in the present system. Assuming the new capacity is 
efficiently allocated, the cost of the delays that NAS investments would eliminate provides a 
lower bound on their benefits to society.  The results of this study suggest that policies and 
mechanisms that discourage overscheduling should be considered in concert with capacity 
enhancements to insure effective use of new capacity in order to reduce flight delay and its 
associated costs. 
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1 Introduction 
Flight delay is a serious and widespread problem in the United States. In 2007, nearly one in four 
airline flights arrived at its destination over 15 minutes late (BTS, 2009). About a third of these 
late arrivals were a direct result of the inability of the aviation system to handle the traffic 
demands that were placed upon it, while another third resulted from airline internal problems. 
Most of the remainder was caused by an aircraft arriving late and thus having to depart late on its 
next flight (BTS, 2009). 

Between 2002 and 2007, as the air transport system recovered from the 9/11 attacks, scheduled 
airline flights increased about 22 per cent, but the number of late-arriving flights more than 
doubled. Since 2007, traffic and delays have declined somewhat because of the recession, but the 
FAA expects growth to resume, with air carrier flight traffic reaching 2007 levels by 2012, and 
growing an additional 30 per cent by 2025. It is widely recognized that delay increases 
nonlinearly as demand approaches the capacity in the system (Figure 1-1). If current demand in 
the system is D1 with delay at delay1 level, it is likely that, without substantial upgrades to 
aviation infrastructure, such growth (for example, to D2) would result in flight delays far in 
excess of any we have heretofore experienced (delay2).  

 

 
Figure 1-1: Illustration of the relationship between delay, demand and system capacity 

 

Growing delays threaten the competitiveness of the US in the world economy, by limiting the 
ability of the air transport system to serve the needs of the US economy. The growth in gross 
domestic product and air travel demand are closely linked; a recent multi-national study found a 
strong correlation between growth in economic productivity and growth in business travel 
(Oxford Economics, 2009). Business travel accounts for about half the dollars spent on domestic 
air transport (BEA, 2009), and with good reason—a recent study estimates that a dollar spent on 
business travel earns a return of about $12 in increased revenue to the traveler’s employer 
(Oxford Economics, 2009). In addition to improving business performance generally, air 
transport impacts the economy through the jobs and revenue it directly creates in air transport-
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related industries, the expenditures of air travelers on auxiliary goods and services, and the 
secondary impacts that result as these dollars recycle throughout the economy. FAA estimates the 
total economic impact from civil aviation at $1.3 trillion in economic output, nearly $396 billion 
in earnings, and 12 million jobs in 2007 (FAA ATO, 2009). 

Ironically, the airline industry itself has realized very little return from these economic 
contributions. Most US airlines have operated in the red for most of this decade. US passenger 
airlines lost over $60 billion between 2000 and 2008, on revenues of just over $1 trillion (ATA, 
2009a). Large losses following the 9/11 attacks were followed by a recovery foreshortened by 
skyrocketing oil prices and a recession, which led to even larger losses. As of December 2009, 
the total market capitalization of major US carriers was about $26 billion, a drop of 65 per cent 
from early 2007, when the prospects for recovery appeared brightest. Flight delays, by increasing 
airline costs and reducing demand for air travel, compound these financial challenges. 

Building on a strong domestic market, aerospace manufacturing had the highest net exports—
some $60 billion – of any U.S. industry in 2008 (FAA ATO, 2009). The four largest airlines in 
the world are all U.S. carriers, as are five of the world’s top ten busiest airports. The FAA Air 
Traffic Organization is the largest, busiest, and (arguably) most efficient provider of air 
navigation services in the world. It may be difficult to maintain such competitive strength if 
future growth is stifled by high delays.  

Substantial investments are required in order to modernize and expand our aviation infrastructure 
so that it can accommodate anticipated growth without large increases in delay. The Next 
Generation Air Transportation System (NextGen) will deploy improved systems for 
communications, surveillance, navigation, and air traffic management and also require flight 
operators to invest in new on-board equipment. Substantial improvements in air transportation 
capacity also require airport infrastructure enhancement. Estimates of these combined 
investments reach well into the 10’s of billions of dollars (GAO, 2008; ACI, 2009). 

The Federal Government together with the air transportation industry must decide on a level of 
investment to make in future system capacity. Other approaches to reducing delay, such as 
reducing incentives to over scheduling flights, might also be considered. To help inform decision 
making on such issues, the FAA has sponsored this study of the total economic impact of flight 
delay in the United States. Focusing on the year 2007—the worst on record in terms of flight 
delays—the study attempts a comprehensive accounting of the economic cost of flight delays to 
airlines, air travelers, and the rest of society. The analysis assesses the cost to society of all air 
transportation system delays. To be sure it would be impossible to eliminate all of these delays 
and their costs, and even unwise to seek to do so. In this regard, the TDI study is similar to others 
that attempt to measure the size—i.e. the social cost--of a problem, such as air pollution (e.g. 
Muller et al, 2007), motor accidents (e.g. Cambridge Systematics, 2008), or crime (e.g. Anderson, 
1999), while recognizing that the problem cannot be entirely eliminated. At the same time, it is 
quite reasonable to seek to eliminate—through policy innovation, research and development, and 
capital investment--a substantial portion of these delays and the magnitude of the costs involved 
suggests that doing so could benefit society significantly. The calculation of the cost of delays is 
one way to estimate the potential benefits of capacity increases. The air transportation system will 
react to any capacity increases by altering service patterns. For example, if future capacity is 
increased, the system might move to D3 and delay3 in Figure 1-1, instead of D2 and delay2. Thus, 
the benefits of such capacity increases could manifest themselves as both delay decreases and 
better service offerings. Nonetheless, assuming capacity is used efficiently, the cost of the delays 
the capacity could eliminate provides a lower bound on the benefits the capacity increases 
provide to society.   
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Table 1-1: Comparison of TDI and JEC delay cost estimates ($ billions) 

  TDI  JEC 

Costs to Airlines 8.3 19.1 

Costs to Passengers 16.7 12.1 

Indirect Impact on Economy 4.0 9.6 

Costs from Lost Demand 3.9 N/A 

Total Cost 32.9 40.7 

 

Other studies have examined the total cost of delay. According to a report prepared for the Senate 
Joint Economic Committee, the total cost, to airlines, passengers, and the rest of the economy, is 
estimated to be as high as $41 billion in 2007, including $31 billion in direct costs and $10 billion 
in spillovers (JEC 2008). The Air Transport Association, using a different methodology, 
estimates costs (for the year 2008) to be $14 billion, not including spillovers (ATA, 2009b).  

Part of the motivation for the present study is the disparity of the above estimates. In addition, the 
JEC and ATA results, as well as several earlier studies on the same subject, overlook factors 
whose importance has become increasingly recognized within the aviation research community. 
They do not, for example, recognize the rather complex relationship between flight delay and 
passenger delay, or consider how degraded service quality affects the demand for air travel. This 
suggests the need for a more comprehensive and careful look. Table 1-1 provides a comparison of 
the TDI aggregate numbers, presented in the executive summary, and the JEC aggregate numbers. 
Note several significant discrepancies. The TDI airline cost estimate and the TDI indirect cost 
estimate are both substantially smaller than the corresponding JEC numbers. The TDI and JEC 
estimation approaches differed substantially. In both cases, we employed economic models 
calibrated on historical data. The JEC work relied on a simple allocation of costs based on total 
flight time for the airline cost estimate and a generic macroeconomic impact multiplier for the 
indirect economic impact estimate. On the other hand, the TDI passenger cost estimates are 
higher. This is principally due to our inclusion of estimates of the passenger costs due to flight 
cancellations and missed connections. The JEC report did not calculate an estimate of the costs 
associated with lost demand. 

This report summarizes the findings from our cost assessment. Section 2 provides an overview of 
the flight delay phenomenon, the types of costs that are incurred from delay, and our final 
estimates of the magnitudes of such costs in 2007. Section 3 provides a more detailed description 
of the methodologies employed to obtain the cost estimates. It covers relevant components such 
as delay and buffer cost to airlines (section 3.1), to passengers (section 3.2), cost of voluntary 
passenger schedule adjustment (section 3.3), capacity induced schedule delay cost (section 3.4), 
value of demand lost due to delays (section 3.5), and indirect impact of delays on US economy 
(section 3.6). Section 4 provides additional perspectives on the results by relating them to 
practical experiences of air travelers and industry trends. It also suggests areas where further 
investigation may be warranted and discusses related costs and delays not covered. Finally, 
Section 5 suggests some possible policy implications of the results.  
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2 Delays and Their Impact 
To understand the impact of congestion and delays on the air transportation system, we start with 
a stylized view of how the system would operate in their absence. An airline might start the 
process of scheduling a flight by determining an ideal flight departure time (IDT). The IDT 
would take into account not only preferred passenger travel times, but also internal airline 
constraints, such as those necessary to create efficient crew schedules and fleet plans.  As part of 
this process, the airline would then choose the most appropriate aircraft type from its fleet for the 
flight. Using the characteristics of that aircraft and assuming it could fly the optimal, unimpeded 
origin-to-destination trajectory, an ideal arrival time could be computed as illustrated in Figure 2-
1.  This unimpeded flight time is a key quantity in our analysis whose estimation will be discussed 
later in this document.  

 

 
Figure 2-1:  Ideal flight 

 

Now let us consider how congestion and delays alter this situation. As illustrated in Figure 2-2, 
the airlines will typically increase scheduled flight times over unimpeded ones in order to account 
for delays resulting from flight restrictions imposed to organize traffic, congestion, and a variety 
of other factors. We call this added time, the schedule buffer (SB). Once an unimpeded flight time 
has been determined the schedule buffer can be computed from historical data.  

 

 
Figure 2-2:  Schedule buffer (SB) 

 

Of course, the type of delay most typically discussed occurs when the arrival is later than 
scheduled. This is illustrated in Figure 2-3. Such flight delay against schedule (FDS), like SB, 
reflects excess travel time much of which is related to congestion in the air transportation system. 
However, while SB is known in advance for a particular flight, FDS is not. FDS varies 

Schedule Buffer (SB) 

IDT IAT 

scheduled flight 
arrival time 

(SAT) 

ideal arrival 
time (IAT) 
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flight time 

ideal departure 
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unpredictably from day to day and flight to flight; it can even be negative because the SB may 
exceed the delays incurred for a particular flight. This gives FDS a very different character when 
compared to SB.  

 

 
Figure 2-3: Flight delay against schedule (FDS) 

Congestion and delays affect both airlines and passengers, albeit in different ways. These 
phenomena have a definite impact on airline costs, which we assess. Passengers see increases in 
the time required for travel, experience inconvenience and stress, and may face additional 
expenses for food and lodging. The costs to airlines and passengers—some in the form of added 
expense and lost revenue, and others in the form of decreased convenience and additional 
misery—are the direct costs of flight congestion and delay. We note that infrastructure 
congestion, e.g. at an airport, can actually benefit an individual airline by limiting access by 
competitors and allowing that airline to charge higher prices. This effect is not captured in our 
work. 

This discussion has implicitly assumed that the number of passengers remains fixed as system 
delays change. In fact, if air transportation delays were eliminated or reduced then air travel 
would become more attractive and the demand for it would increase. This increase in demand will 
provide benefits that are apportioned in some way between airlines and passengers. In fact, it can 
be difficult to isolate one benefit from the other so we calculate and discuss this effect in the  
section on passenger delay costs (see 3.5.1). Of course, such demand increases could in turn spur 
additional flight traffic and restore some delays in the system. We do not consider this feedback 
effect here. 

These direct congestion costs propagate through the rest of the economy, creating a third cost 
category. Any phenomenon that makes one industry segment, e.g. air transportation, more 
expensive leads to higher costs and lower efficiency in other segments, e.g. manufacturing, retail, 
etc. The added costs and reduced profits of any industry that depends on air travel, and the 
resulting impact on its customers, constitute the indirect impact of flight congestion and delay. 
Accordingly, we break down our discussion of costs into three categories:  airlines (Section 2.1), 
passengers (Section 2.2) and indirect impact on US economy (Section 2.3). We develop an 
estimate of the cost impact for each category. 

2.1 The Airline Perspective and Airline Costs 
As discussed we will estimate the impact of delays on airline costs in terms of two measurable 
quantities:  schedule buffer (SB) and flight delay against schedule (FDS). To illustrate the impact 
of SB on airline costs, we note that the typical pilot contract specifies that pilots are paid based on 
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the maximum of scheduled block time and actual block time. Thus, the SB directly increases pilot 
(and airline) costs. Further, airlines create their fleet plans based on the scheduled flight arrival 
and departure times so that increasing SB leads to changes in schedules and eventually to poorer 
aircraft utilization and larger fleets. The high degree of uncertainty associated with FDS gives it a 
very different character. Since airline fleet and crew schedules are based largely on the scheduled 
times, excessive or even moderate amounts of flight delays can be highly disruptive causing extra 
crew costs, various costs associated with accommodating disrupted passengers and even aircraft 
repositioning.    

We employ translog models, which incorporate both delay against schedule and schedule buffer 
to estimate airline cost functions. Our estimation results support the view that poorer operational 
performance (i.e. more FDS and SB) leads to more expensive operations. Such airline cost 
models establish an empirical basis for translating delay and buffer into monetary terms. Using 
these models, the potential cost savings that could result from reducing FDS and SB are estimated. 
Table 2-1 gives a summary of our estimates for 2007. Note that our cost model includes 7 major 
U.S. airlines whose service dominates in the entire air transportation system. An estimate 
covering the entire industry is also calculated. We investigated the relevant airline cost under two 
scenarios. In the first scenario, FDS is entirely eliminated; in the second scenario, we further 
reduce SB to zero. Section 3.1 provides more detail. We also tried alternative approach to 
modeling the relationship between airline cost and operational performance. This second 
approach yields somewhat higher costs estimates—as much as $13 billion industry wide. This is 
also discussed in Section 3.1. We report the lower value here because it is based on a more 
standard approach for characterizing flight delay and buffer. 

 

Table 2-1: Airline cost estimates for 2007 ($ billions)  

 Delay Against 
Schedule 

Buffer Total 

7 major airlines 3.3 2.6 5.9 

Industry wide* 4.6 3.7 8.3 
                            * Includes airlines with $20 million annual operating revenue only. 
 

Of the $8.3 billion total, $4.6 billion is attributed to the most common notion of delay, FDS. The 
contribution of SB, $3.7 billion, is of comparable magnitude. These figures, like those in the 
presented elsewhere in this report, reflect cost savings that would result from an unattainable 
ideal case in which all schedule buffer and delay against schedule were eliminated. They are 
intended to establish an upper bound for the airline cost savings that could result from improving 
the operational performance of the air transportation system. The question of how much of these 
savings is actually attainable is addressed in Section 5 of this report. 

2.2 The Passenger Perspective and Passenger Costs 
It is common to view flight delay statistics as representative of passenger delays. In fact, 
NEXTOR research over the past several years has demonstrated that there can be very dramatic 
differences between flight delays and passenger delays.  

To see the differences and also to understand passenger costs let us take a simple view of how a 
passenger approaches air travel in an ideal environment. A passenger might start with a preferred 
arrival time (PAT).  Based on the travel times offered by a chosen airline this could be converted 
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into a preferred departure time (PDT) as illustrated in Figure 2-4. We note that this time is a bit 
different from the unimpeded flight time described earlier. First, it could be that the scheduled 
itinerary time involves multiple flights. Of course, a passenger in most cases would prefer a 
single nonstop flight. However, multi-flight-leg itineraries are a way in which the airlines provide 
cost effective service to passengers. Passengers also benefit from this by enjoying more frequent 
services. Thus, while the extra time associated with such itineraries might be viewed as a type of 
delay, it is not caused by congestion or deficiencies in air traffic management but rather by 
mechanisms used by airlines to provide cost effective service. On the other hand, the schedule 
buffer included within each constituent flight is a result of congestion as discussed above and 
certainly represents extra passenger travel time and thus a cost to passengers.  

 

 
Figure 2-4:  Preferred passenger trip 

 

It is frequently assumed that flight delay statistics provide an accurate depiction of passenger 
delay. However, the quantity analogous to FDS, passenger delay against schedule (PDS), can be 
very different from FDS. If a passenger books a direct flight to his or her destination and is able 
to take that flight, then the delay of that flight corresponds to the delay of the passenger. 
However, average flight delay statistics do not capture the delays associated with disrupted 
passengers. A passenger’s trip is disrupted if that passenger is not able to take one or more of his 
or her booked flights. The two most typical cases for trip disruptions are: 

• a passenger arrives at the airport and, subsequently, the booked flight is canceled; 

• a passenger misses a connection on a multi-leg trip.   

Figures 2-5 and 2-6 illustrate these phenomena. Note from Figure 2-6, the rather complex 
relationship between the delay on the first leg of a two leg trip and the passenger’s final delay. If 
the passenger makes his or her connection then the final delay depends only on the delay on the 
second flight leg. Thus, small delays on the first flight leg have no impact on the final delay. On 
the other hand, larger delays on the first leg can have the very dramatic effect of causing a missed 
connection and subsequent, sometimes extreme, delays. This illustrates the fact that average PDS 
depends on the distribution of flight delays (as well as other factors), not just average FDS. Thus, 
while there are readily available statistics that allow direct compilation of total FDS, it is more 
difficult to compute (or estimate) total PDS. In the past, NEXTOR has obtained proprietary 
airline data and has calculated passenger delays for individual airlines over limited time periods. 
For this study, new models in section 3.2 have been developed that allow more accurate 
estimation of passenger delays for an entire year on a NAS-wide basis. We note that passenger 
delays depend on flight delays but also on flight cancellation rates and load factors. The 
relationship to cancellation rates is easy to see based on Figure 2-5. Note from both Figures 2-5 
and 2-6 that both a flight cancellation and a missed connection require that passengers be 
accommodated on flights for which they were not originally ticketed. Doing this requires 
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available space on the flights in question. As load factors become higher such space is harder to 
find, increasing delays for disrupted passengers.  

 
Figure 2-5:  Illustration of passenger delay to schedule (PDS) for the case  

where the passenger is booked on a flight (F1) that is  
cancelled and is accommodated on another flight (F1’) 

 

 
Figure 2-6: Passenger delay to schedule (PDS) for the case where the passenger has  
two leg itinerary and the first flight (F1) is delayed inducing a missed connection.  

The passenger is accommodated to his or her final destination on a third flight (F2’) 

 

To summarize the above discussion, passenger delay costs can be related to a combination of SB 
and PDS. While statistics on SB can be readily derived from historical data, PDS statistics must 
be estimated based on sophisticated models that depend of flight delays, cancellation rates and 
load factors.  
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Just as airlines add buffers to flight schedules to increase schedule reliability in light of uncertain 
flight delays, passengers often plan their departure times taking into account the possibility of 
arrival delays. If a passenger absolutely needs to be at a destination by 10:00 AM he or she 
typically would not take a flight scheduled to arrive at 10:00 AM. Rather the passenger would 
take a flight scheduled to arrive earlier to ensure arrival by 10:00 AM even in the case of 
significant flight delays. In fact, it is not uncommon for a traveler to fly in the night before, only 
to ensure timely arrival at a morning meeting. As illustrated in Figure 2-7, we call this 
phenomenon and the associated adjustment in departure time voluntary departure time 
adjustment (VDA) 

While passengers and airlines might adjust departure times for specific reasons, it is also the case 
that there are many factors that influence scheduled flight times. Flights are rarely available at 
exactly the time when a given passenger would like to fly. For example, a passenger might wish 
to arrive at a destination at 9:00 AM via a one hour flight.  Thus, ideally the passenger would 
book an 8:00 AM flight.  However, it could be that the only flight offered before 9:00 was a 7:00 
AM flight.  Thus, the passenger would be “forced” to take the 7:00 AM flight and we would say 
the passenger suffered one hour of schedule delay.  Generally, schedule delay is the result of 
airline scheduling practices, which depend on a wide range of factors the airlines must take into 
account in order to produce cost effective schedules. Thus, most schedule delay cannot be 
“blamed” on NAS capacity constraints.  However, at highly constrained airports, it could be that 
the airlines are forced to flatten their schedules and offer flights at inconvenient times when they 
otherwise would seek to provide better service to their passengers. Using techniques specifically 
developed for this project, we are able to estimate the schedule delay resulting from scarce 
capacity, isolating it from the schedule delay resulting from normal airline scheduling practices. 
Figure 2-7 also illustrates this case; we call this phenomenon and the associated added time 
capacity induced schedule delay (CSD).  Clearly the delays just discussed are different from more 
traditional notions of delay. However, they would not occur in a system with ample capacity that 
and much less congestion.  
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Figure 2-7:  Illustration of delays related to difference  

between actual and desired departure time 

 

Before presenting our statistics on passenger costs and delay, it may be worthwhile to consider all 
of the cases we have discussed and their potential interaction. One can view the passenger 
decision-making process sequentially, as starting with a preferred arrival time, then calculating a 
preferred departure time. Associated with this hypothetical flight is the potential for an unknown 
passenger delay (PDS). Based on the expected PDS, the passenger might further adjust the 
departure time by VDA to add certainty to the arrival time. Finally, schedule constraints could 
impose a further change by CSD. Our explanation has assumed a passenger begins with a 
preferred arrival time; however, a similar sequence could have been created assuming the 
passenger began with a preferred departure time. Clearly, these delays and schedule adjustments 
are inter-related but when one considers a particular passenger trip they are largely independent 
phenomena. VDA and CSD represent adjustments to the passenger’s chosen departure time due 
to generally independent mechanisms. SB is an expansion of the passenger’s scheduled (and 
actual) flight time. This expansion is known in advance and anticipated by the passenger. PDS is 
highly stochastic and can be extremely disruptive. In the calculations that follow, we 
independently estimate each of these and associate a cost with each one. These costs are then 
added together. One might argue that there is a degree of “double counting” in this approach. For 
example, if a passenger chooses to leave the night before to insure getting to a morning meeting 
on time, then the passenger has already adjusted for, and paid the price for, possible PDS. 
However, such a passenger may plan to have a leisurely dinner and/or get to bed at a convenient 
time. If that passenger arrives three hours late, then these planned activities would be disrupted 
and further costs would be incurred.  Thus, we argue that, once a passenger has planned a trip, 
with or without substantial departure time perturbations, the SB and PDS costs of the associated 
flight are still real and can be added to any costs related to the adjusted departure time.  

Table 2-2 provides the overall passenger delay costs. These are obtained by first deriving a cost 
estimate (or a lower bound on the cost) of each delay component: TC[SB], TC[PDS], TC[CSD], 
TC[VDA].  The notation TC[] refers to the total cost of the respective component over all 
domestic passengers during 2007. Calculations of SB, PDS, CSD, and VDA are discussed in 
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detail in sections 3.2 – 3.4. Based on the above discussion the various components are combined 
via a simple addition, i.e 

Total Passenger Cost = TC[SB] + TC[PDS] + TC[CSD] + TC[VDA]. 

The preceding analysis discussed the estimation of the increased value of air travel assuming that 
the existing passenger made the same trips before and after delays were eliminated (and implicitly 
that they paid the same price). In general, passengers are willing to pay a higher price for less 
delayed flights and airline costs are reduced as delay decreases. Thus, delay reductions would 
lead to a new equilibrium in the supply/demand relationship between the airlines and their 
passengers with both the airlines and passengers accruing a portion of the overall welfare gain. 
Rather than trying to apportion the benefit of the reduced delay between the airlines and 
passengers, this analysis implicitly allocates the entire benefit to the passengers, i.e. passenger 
delay is reduced and passengers pay the same price. This accounts for the entire welfare gain 
while not attempting to accurately determine how the gain is apportioned between airlines and 
passengers. For similar reasons, the elimination or reduction of delays would also increase the 
demand for air travel. These new passengers would also incur a benefit. That benefit is the 
difference in the value of their travel over the value of travel on the alternative transportation 
mode they use today. To estimate this effect we take a social welfare approach and estimate that 
increase in social welfare accrued by these new trips using the air transportation system. This 
work is summarized in the next section. 

 

Table 2-2:  Passenger delay cost estimates for 2007 ($ billions) 

Delay Category Delay Cost 

1.  SB (schedule buffer) 6.0 

2. PDS (passenger delay against schedule) 
    2a. Delay due to delayed flights 
    2b. Delay due to flight cancellations 
    2c. Delay due to missed connections 
Total estimated PDS (2a+2b+2c) 

 
                   

4.7 
3.2                  
1.5 
9.4 

 

3.  CSD (capacity induced schedule delay)  0.7 

4.  VDA (voluntary early departure time adjustment) 0.6 

Total cost of passenger delay 16.7 

* In calculating the delay cost for category 1 and 2, a standard cost per unit time ($37.6/hr) 
is assumed (DOT, 2003; inflated to 2007 value). Cost of CSD and VDA are based on the 
respective estimates.  

 

2.3 Cost of Lost Demand 
Flight delay degrades the quality of the airline product. While many air travelers choose to “grin 
and bear it” others respond by switching to alternative transportation modes, or simply not 
traveling at all. Such travelers do not bear the costs of air travel delay discussed in Section 2.2, 
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but still incur a loss in welfare. In the air transportation market, both passengers’ decision on 
traveling and airlines’ pricing behavior are influenced by flight delays. We explicitly model 
passenger demand and fare to be functions of flight delays (see Section 3.5.1). By simultaneously 
estimating the demand and fare functions, the demand and supply interactions on the route level 
are investigated. The model results indicate that delays have an upward impact on fares, while at 
the same time decreasing people’s willingness to pay for travel by air. Using a discrete choice 
model, we find some of the trips are shifted to automobile, and the additional road traffic 
generates congestion costs on other road users and environmental costs on society at large. Table 
2-3 summarizes these results. The first component is an estimate of the difference in the value (or 
welfare) that certain air travelers would have achieved using air transportation in a delay-free (or 
low delay) environment and the value they did achieve having chosen to shift to another mode 
because of air transport delays. There is an additional externality due to the switch to automobile. 
Specifically, car travel is less safe than air travel so that this switch from air to car will cause 
additional fatalities (see Section 3.5.2). An estimate of this cost is also provided in Table 2-3.  

 

Table 2-3: Cost of lost air transport demand for 2007 ($ billions) 

Cost Component Cost 

1. Welfare loss due to switch from air to automobile 3.7 

  

2. Externality cost from increased road traffic 0.2 

  

Total cost of Lost Air Transport Demand 3.9 

 

2.4 Indirect Impact on US Economy 
The impacts of flight delays are not confined to airlines and their passengers. Other segments of 
the economy are also affected. Increases in airline costs caused by delay and schedule padding 
cause passengers to pay higher fares. These higher fares affect not just the demand for leisure 
travel but also lead to increases in the cost of production for industries that rely on air 
transportation to conduct business. Demand for the output of such industries in turn decreases. 
Schedule padding and flight delays also add to the time required for business trips, leaving 
business travelers with less time to do their work.  As a result, delays cause employers to 
experience a loss in productivity.   

Tracing out these various effects requires an integrated model of the national economy. For this 
purpose, we utilized a single-region Computable General Equilibrium (CGE) model.1

                                                      
1 Specifically, we employed the USAGE model (see Section 3.6). 

 This model 
was modified to reflect our findings on the direct costs of delay. We explicitly modeled the 
increases in airline costs caused by delay, and the loss in productivity for business travelers. The 
CGE framework then traced the effects of these changes in cost as they rippled through the 
economy. The model traced the effects of cost increases on the growth of the U.S. economy over 
the period from 2005 through 2013. 
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Two sets of simulations were performed to assess the macroeconomic impact of flight delays. A 
baseline simulation projected the effects of changes in income, consumer tastes, and technology 
on the demand for air transportation and the amount of flight delay over the period from 2005 and 
2013, assuming no policies or actions are taken to reduce flight delays. The second set of 
simulations assumed the elimination of delays (actually reduction by 90%) for a given level of 
industry output. In this way we calculate that in 2007 U.S. GDP was approximately $4 billion 
lower than it would otherwise have been in the absence of delays. Of course, the investments and 
expenditures required to reduce delays would also generate economic impacts, but these are not 
considered here. We note that this estimate is lower than others that have previously been 
published (see, for example, the JEC study -- JEC 2008). Many of these prior studies focus solely 
on delay-induced changes in cost, and fail to account fully for how these cost changes affect the 
growth of the economy. In contrast, our analysis took into account the fact that increases in the 
efficiency of air transportation would actually decrease certain direct economic activities 
associated with this sector since fewer pilots, flight crews, etc would be required to carry out the 
same business functions. On the other hand, there would be an increase in the economic activity 
of other businesses due to the reduction in the cost of a component of their production (air 
transportation). The net effect is certainly a positive increase in economic activity but perhaps not 
as great as some earlier studies have estimated.  

2.5 Summary 
Table 2-4 provides a compilation of all cost components. Certainly by any objective standards 
these costs are large and indicate that appropriate mitigation actions should be considered. At the 
same time, one should keep in mind that total elimination of all delays is neither practical nor 
desirable. Perspective on this issue as well as possible policy implication is discussed in Section 5.  

It is instructive to compare these results with the results provided in the JEC report (JEC, 2008). 
Our estimate of airline cost is smaller (JEC: $19.1 B, TDI: $8.3 B). The difference may be due to 
the use of completely different approaches. This JEC number, as pointed out by the report itself, 
“may overstate the relevant costs” (JEC, 2008). In fact, the JEC study also reported their cost 
estimates using an alternative approach which produced much lower airline cost estimates ($3.6-
6.1 B). Our results just lie between their high and low ends of estimates. On the passenger side, 
our estimated costs are somewhat larger in magnitude (JEC:  $12.0 B, TDI: $16.7 B). One reason 
for the passenger cost discrepancy is the inclusion in the TDI analysis of delays due to flight 
cancellations, missed connections and other factors. The JEC study did not estimate the cost of 
lost demand.  

 

Table 2-4:  Overall cost of US air transportation delays for 2007 ($ billions) 

Cost Component Cost 

Cost to Airlines 8.3 

Costs to Passengers 16.7 

Cost from Lost Demand 3.9 

Total Direct Cost  28.9 

Impact on GDP 4.0 
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The two studies did diverge somewhat significantly in their estimate of the impact on the GDP 
(JEC:  $9.6 B, TDI:  $4.0 B).  As discussed earlier, the TDI modeling approach sought to capture 
both positive and negative impacts on GDP; this perhaps could explain this difference. 
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3 Underlying Models and Justification 

3.1 Impact of Delay on Airlines 
The research team employs a statistical cost estimation methodology to estimate how delays 
affect airline costs. This method differs from most previous research on this subject, which used 
cost factors to estimate airline delay costs. The cost factor approach involves decomposition of 
delay into different types and multiplying the quantity of each type by a cost factor. While simple 
and useful, this approach is problematic because it is difficult to know how to properly categorize 
delay, quantify delay by category, and determine the appropriate cost factors. In addition, most 
studies of this kind only account for delay against schedule, but ignore the fact that airlines 
routinely build buffer into schedule, in order to enhance their on-time performance record and 
preserve operational integrity. On the other hand, the cost impact of schedule buffer is more 
difficult than delay against schedule for airline managers to directly observe or account for. 

We take an alternative approach based upon developing airline cost functions. The cost function 
approach investigates the statistical relationship between airline cost and its various influencing 
factors. The formulation is built upon production theory in economics. The cost function is 
derived assuming that each airline minimizes its cost of producing a certain output, given the 
costs of its input factors for production such as labor and fuel, as well as other factors that 
influence its production process. One factor among the latter can be delay. The statistical cost 
estimation approach provides an empirical basis for translating delay into monetary terms, which, 
unlike the cost factor approach, involves a minimum of assumptions about the delay–cost 
interaction mechanisms. 

3.1.1 Cost Model Set-up 

The cost function of a firm is defined as the lowest cost at which it can produce a given amount of 
output itY , provided the input prices itW



 it faces: ),( itit WYfC


= . Subscript i denotes a particular 
firm (airline), and t identifies the time period. A typical output measure can be airlines’ revenue 
ton-miles. Inputs include labor, fuel, capital, and materials. The functional form represents the 
cost of acquiring the optimal set of inputs, given the output and input prices (Hansen et al, 2001). 
In reality, however, capital inputs cannot be adjusted to the optimal level instantaneously (Caves 
et al., 1984; Gillen et al., 1990). We therefore relax the assumption of optimal capital stock by 
treating capital input, denoted by S, as quasi-fixed and employing a variable cost function to 
reflect the short-run cost minimization process. The airline variable cost function can then be 
written as a function of its output itY , the price of the three variable inputs (fuel, labor, and 
materials) itW



, and capital input itS , i.e. ),,( itititit SWYfVC


= . 

In the airline cost literature, it has long been recognized that costs depend on the nature and 
quality of airlines’ output as well as the quantity. Because the nature and quality of output also 
vary over time and across carriers, the specification of the airline cost function above needs to 
take these into account. A set of additional variables 

itZ
 describing the nature of the output are 

introduced. Variables of this kind that often appear in literature include a measure of the size of 
the airline’s network (often measured as the number of points served) and the average flight 
distance (stage length). We hypothesize that airlines’ operational performance also affects cost, 
and add a new variable (or vector of variables) itN . The cost function then becomes

),,,,( itititititit NSZWYfVC


= . As we will see in the ensuing sub-sections, we estimated two 
versions of this model with different characterizations of operational performance. 
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3.1.2 Delay-based Model 
The first version of the airline cost model employs the concepts of delay against schedule (FDS) 
and schedule buffer (SB) explained in Section 2.1. As discussed in Section 2.1, delay against 
schedule and schedule buffer are both manifestations of limitations in the NAS that prevent 
airlines from adhering to schedules built on unimpeded flight times, although the former is more 
readily observable than the latter. Both delay against schedule and schedule buffer need to be 
considered in order to assess the full cost impact of delay in the NAS. Exclusion of the schedule 
buffer could result in an underestimate of the true cost impact.  

To measure delay against schedule, we use average positive arrival delay, a widely accepted 
metric. The positive delay against schedule for a given flight is the difference between its actual 
and scheduled gate arrival times, truncated so that delays of early flights are counted as zero. The 
quantification of schedule buffer is less straightforward, because less attention has been paid to 
this phenomenon and no consensus has been achieved on its measurement. In this study two 
schedule buffer metrics are developed and investigated. The two metrics differ from each other in 
terms of defining the unimpeded flight time. For each flight segment and quarter, the unimpeded 
flight times under the two metrics are the 10th and 20th percentiles of the observed block time over 
all flights. Not choosing the minimum travel time makes the calculation more robust to 
measurement error, and reduces the influence of unusually favorable conditions, such as strong 
tailwinds. Then for each flight, the schedule buffer is defined as the difference between its 
scheduled block time and the unimpeded flight time. The average schedule buffer is obtained by 
averaging the schedule buffer across all flights for each airline and quarter.  

The models presented here use the sum of the average positive arrival delay and the average 
schedule buffer as the measure of operational performance. We also estimated models in which 
these variables were included individually, but results suggested that the single combined 
measure was adequate. 

Delay against schedule and schedule buffer are constructed using the Bureau of Transportation 
Statistics (BTS) Airline On-Time Performance database. The database contains scheduled and 
actual arrival and departure times, as well as wheels-off and wheels-on times, for every domestic 
flight operated by major carriers that account for at least one percent of domestic scheduled 
passenger revenues in the US. The airline-quarter panel consists of nine US major airlines 
(American, Alaska, Continental, Delta, American West, Northwestern, United, US Airways, and 
Southwest) spanning from the first quarter of 1995 to the fourth quarter of 2007. These nine 
airlines provide the majority of passenger transportation service in the U.S. airline industry, and 
are particularly dominant at airports with high delays. As a consequence, we expect that these 
airlines will absorb the majority of the increased costs resulting from delay.  

For other variables in the cost model, data are extracted from the airline balance sheet, traffic, and 
expenditure information published in the BTS Form 41 database. We focus on domestic data, 
since airline on-time performance records are only for domestic flights. In our study, the selected 
airlines are all passenger service focused, with only a small portion of their traffic undertaking 
cargo, mail, and other types of business. For this reason we use total revenue-ton-miles (RTM) to 
represent the aggregate output. Fuel and labor input prices are calculated using fuel expense per 
gallon and labor expense per employee per quarter. To account for the difference brought by full- 
and part-time employees, we use a weighted sum of employment based on the hours paid to 
employees. As a proxy for materials price, we choose the producer price index (PPI), which 
varies by quarter but not by airline. Index data are collected from the US Bureau of Labor 
Statistics. Capital input is obtained by multiplying the capital stock with the utilization rate, for 
which load factor is used as a proxy. Our measure of capital stock consists of the asset values plus 
investment for each airline-quarter. Four types of assets are included: flight equipment, ground 
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property and equipment, capital leases, and land. Among the variables in vector
itZ
 , we divide the 

total distance flown by the total number of departures performed to obtain the average stage 
length. The number of points served is extracted from the BTS Airline On-Time Performance 
database. Table 3-1 presents the summary statistics of the variables in the sample. Overall, our 
data set is larger than the ones used in many previous airline cost studies, and thus provides richer 
information and greater variation of relevant variables, contributing to better estimates of the cost 
functions. 

 

Table 3-1: Descriptive statistics of key variables 

 Mean Std. Dev. Min. Max. 

Revenue-ton-miles (million) 1266.5 662.5 176.6 2541.9 

Fuel price ($/gallon) 0.94 0.52 0.36 2.68 

Labor price ($/employee) 17800.7 4111.1 8688.8 30729.4 

Materials price (PPI) 147.9 22.3 109.3 187.9 

Capital stock (million $) 11314.7 8524.8 589.4 29127.7 

Load factor (%) 72.0 5.7 55.3 87.4 

Stage length (miles) 815.9 187.2 396.5 1167.9 

Number of points served 80.4 26.0 34.0 130.0 

Variable cost (million $) 1548.3 864.3 183.2 3513.6 

Delay against schedule (min) 12.2 3.2 5.5 28.8 

Delay against 10th percentile 
feasible flight time (min) 25.4 4.2 14.8 39.9 

Delay against 20th percentile 
feasible flight time  (min) 22.2 3.8 13.1 36.7 

 

We choose a translog model as the specific cost functional form for estimation. A translog cost 
model is in general an extension of the classic Cobb-Douglas cost model form, by introducing 
quadratic and interaction terms.2 Compared to the Cobb-Douglas cost model, a translog model 
adds more flexibility and does not assume constant elasticities. In our study, we keep the delay 
variable in level form instead of taking its log value. This allows delay to be reduced to zero in 
the cost impact analysis. All continuous variables are normalized by removing their sample 
means. Therefore, the translog model can be regarded as a second-order Taylor expansion of a 
general function about the mean values of the data. The model also includes a time trend variable 
to capture the evolution of productivity over time,3

                                                      
2 For illustration purpose, suppose cost C is only a function of output Y and one input W, i.e. C=f (Y, 
W). A Cobb-Douglas cost function has the form: logC= â0+ â1logY+ â2logW.â0+ â1logY+ â2logW. In 
a general translog cost set-up, logC= â0+ â1logY+ â2logW+ â11â0+ â1logY+ â2logW+ â11(logY)2+ 
â22â22(logW)2+0.5 â12â12(logY)(logW). 

 and a set of airline fixed effects to account for 

3 A time trend variable takes the value 1 in the first quarter in the dataset, and 2 in the second quarter, 
etc. 
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systematic differences between carriers in efficiency and other factors that influence cost but not 
captured by the included variables. 

The translog cost function is jointly estimated with cost share functions and additional constraints, 
in order to conform to the underlying economic theory (e.g. Shephard’s Lemma and homogeneity 
of input prices) and increase estimation efficiency. The seemingly unrelated regression (SUR) 
technique is used to account for the contemporaneous correlation across equations. For further 
details regarding the estimation process, please refer to Caves et al. (1984), Gillen et al. (1990), 
and Oum and Yu (1998). Estimation results appear in Table 3-2. We have two versions of 
translog cost models, which differ only with regard to the two delay variables constructed. To 
conserve space, only coefficients for first order variables are reported here. Coefficients for 
dummies and higher order variables are provided in the technical support document. 

 

Table 3-2: Estimation results of delay-based Translog cost functions 

 Model 1 Model 2 

 Est. Std. Err. Est. Std. Err. 

Output (RTM) 0.4798*** 0.0339 0.4743*** 0.0342 

Fuel price 0.2011*** 0.0016 0.2009*** 0.0016 

Labor price 0.3861*** 0.0022 0.3859*** 0.0022 

Materials price 0.4128*** 0.0032 0.4132*** 0.0032 

Capital service -0.0542*** 0.0009 -0.0541*** 0.0009 

Stage length -0.1749** 0.0775 -0.1571** 0.0776 

Points served 0.6596*** 0.0556 0.6658*** 0.0558 

Delay against 10th 

 percentile feasible 
 flight time 

0.0065*** 0.0014   

Delay against 20th 

 percentile feasible 
 flight time 

  0.0061*** 0.0015 

R2 0.9900 0.9899 

Adjusted R2 0.9889 0.9888 

Notes: *** p<0.01, ** p<0.05, * p<0.1 

 

The first-order coefficients in Table 3-2 suggest the sensitivity of cost to changes in relevant 
variables, at the sample mean. The first-order coefficients for input prices indicate that at the 
sample mean, fuel and labor inputs account for about 20% and 38%, respectively, in the total 
variable cost. This leaves the materials input to account for 41% of the total variable cost. The 
first-order coefficient for capital input is negative, implying a positive shadow value of capital 
input. The coefficient for average stage length indicates that a 1 percent increase in average stage 
length, output held constant, causes a decrease in variable cost of about 0.16~0.17 percent. This 
should be interpreted as the effect on cost of flying fewer passengers over a longer distance each 
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to obtain the same level of output. The coefficients for points served, about 0.66, suggest a 1 
percent increase in network size leads to an increase in total variable cost of 0.66 percent. Of 
particular interest to this study are the delay variables, the estimates of which support our 
hypothesis that excessive flight time affects airline cost. The coefficient estimates are significant 
and rather consistent between these two models. The coefficients suggest that, at the sample 
mean, one minute increase in delay would cause around 0.6% increase in variable cost. The first 
order effect is, by construction, non-linear, since each additional minute of delay has the same 
percentage impact on cost. As discussed below, the quadratic delay term is insignificant, 
suggesting that the first order relationship is a reasonable approximation of the overall one. 

Overall, the two models have very high goodness-of-fit (as indicated by their R2’s which are close 
to 1). In order to be consistent with the economic theory, the curvature conditions are further 
checked. The curvature conditions are derived by requiring the concavity of a cost function in its 
input prices, which is expected as a result of adjusting inputs quantities to their prices in the 
production process. Our results show that, about 67.6 percent of the data points in the sample 
satisfy the curvature conditions, which compares favorably to the other airline cost studies in 
which such a statistic is reported. 

Before proceeding to delay cost estimation, we notice that the coefficients for some higher order 
terms involving the delay variable are not significant in the above two models. Keeping these 
variables in the model will certainly jeopardize the robustness of our subsequent cost estimates. 
As a consequence we removed insignificant delay terms (in our models these are delay*delay and 
delay*stage length) and re-estimated the two models. The estimates for the remaining coefficients 
are almost unchanged. The percentage of data points satisfying curvature conditions is slightly 
higher (68.3 percent). Moreover, all the terms involving the delay variable now have coefficients 
that are statistically significant. Table 3-3 documents the first-order coefficient estimates for these 
new models. 
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Table 3-3: Estimation results of delay-based Translog cost functions  
with insignificant delay terms removed 

 Model 3 Model 4 

 Est. Std. Err. Est. Std. Err. 

Output (RTM) 0.4840*** 0.0339 0.4793*** 0.0342 

Fuel price 0.2012*** 0.0016 0.2010*** 0.0016 

Labor price 0.3861*** 0.0022 0.3859*** 0.0022 

Materials price 0.4127*** 0.0032 0.4131*** 0.0032 

Capital service -0.0542*** 0.0009 -0.0541*** 0.0009 

Stage length -0.1753** 0.0771 -0.1603** 0.0771 

Points served 0.6628*** 0.0558 0.6672*** 0.0559 

Delay against 10th percentile 
feasible flight time 0.0061*** 0.0013   

Delay against 20th percentile 
feasible flight time   0.0058*** 0.0013 

R2 0.9899 0.9898 

Adjusted R2 0.9888 0.9887 

Notes: *** p<0.01, ** p<0.05, * p<0.1 

 

3.1.3 Time-based Model 

In this section, we consider a model with an alternative set of operational performance variables, 
itN


, that characterize the relationship between the times when a given flight is scheduled to be, 
and actually is, active. Three new time measures are introduced: total absorbed time, scheduled 
time, and actual flight time. The total absorbed time (TAT) of a flight is defined as the time 
interval between the earlier of scheduled and actual departure times, and the later of the scheduled 
and actual arrival times. Scheduled time (S) is a subset of TAT, defined as the time between the 
scheduled departure and scheduled arrival. Actual flight time (A) denotes the time from the actual 
departure to the actual arrival; it is thus also a subset of TAT. 

Using these three measures, the TAT for any flight can be categorized into the following subsets: 
scheduled-active time (S∩A), scheduled-non-active time (S∩~A), active-non-scheduled time 
(~S∩A) time, and non-scheduled-non-active time (~S∩~A). S∩A denotes the time falling into 
both the scheduled flight time and actual flight time intervals. S∩~A is the time within the 
scheduled flight time but outside the actual flight time. It can be caused by either late departures 
or early arrivals.  ~S∩A represents the converse, which results from early departures and late 
arrivals. In the (rare) events of extremely early or late departures, time between the actual arrival 
and scheduled departure, or between the scheduled arrival and actual departure, is ~S∩~A. 
Theoretically there are six possible situations, as illustrated in Figure 3-1. For each situation, the 
solid and dashed arrow lines represent the scheduled and actual flight time respectively. For 
example, if the scheduled departure time of a flight is 7:00am and it actually left the gate at 
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7:30am, then |S∩~A| = 30 min. At the arrival end, the scheduled arrival time is 9:00am but the 
flight pulled up to the gate at 9:20am. In this case |~S∩A| is just the arrival delay, equal to 20min. 
The time between the actual departure and the scheduled arrival is S∩A, amounting to 90min. 
This corresponds to the top-left situation, i.e. late-departure-late-arrival. The other five situations 
can be described as: early-departure-early-arrival (top right), late-departure-early-arrival (middle 
left), early-departure-late-arrival (middle right), extremely-late-departure (bottom left), and 
extremely-early-departure (bottom right). Note that, however, it is quite rare for the last two 
situations to take place. 

Based on the above time categorization, we employ three new operational performance variables: 
the duration of TAT, denoted Ttot, the fraction of this time in S∩~A (i.e. |S∩~A|/Ttot), which we 
denote PS~A, and the fraction that is in ~S∩A (i.e. |~S∩A|/Ttot), denoted P~SA. These variables 
replace the delay variable that was used in the delay-based model. Ttot measures the total amount 
of time the aircraft and crews of an airline are dedicated, in either plan or execution, to 
performing flights. The other two variables quantify the deviations between realized and 
scheduled flight activity.  Ttot is integral to airline production and we therefore keep this variable 
in logarithmic form. The other two variables are included in level form since they can, in 
principle, be eliminated under ideal operating conditions. 

 

 
Figure 3-1: Identification of time components in the six possible situations 

 

Table 3-4 provides the coefficient estimates for the first-order terms (Model 5). Comparing with 
Models 1-4, the factor price coefficients remain largely unchanged. The RTM coefficient is 
substantially lower, due to the inclusion of the total relevant time variable. Stage length is no 
longer significant and has a seemingly counter-intuitive sign, its effect captured by the total 
absorbed time variable, since longer average stage length allows the same output to be produced 
with less flight time. 
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Turning to the operational performance variables, the coefficient for Ttot has the expected positive 
coefficient and is highly significant. The P~SA variable has a significantly positive coefficient, 
suggesting everything else held equal, flight activity outside the schedule window results in 
additional cost. The PS~A variable does not seem to have a significant impact on cost. This 
suggests that flight inactivity during the schedule window—either because of departing late or 
arriving early—does not significantly reduce costs. 

Similar to the previous cost models, the time-based model also has very high goodness-of-fit. 
Checking the curvature condition reveals that an even higher 77.6 percent of the data points 
satisfy the concavity requirement using this model. To make the subsequent cost estimate more 
robust, we check with the higher-order time variable terms in Model 5. We find that the majority 
of such terms not involving input prices are statistically insignificant.4

 

 Considering that these 
variables are not subject to homogeneity restrictions, we re-estimate a simplified version of 
Model 5. In the simplified model (Model 6), higher-order time variables not involving input 
prices are dropped out. Estimation results are reported in the 3rd and 4th columns of Table 3-4. The 
sign and significance of the first-order coefficients are largely unchanged, as does the percentage 
of data points satisfying the curvature conditions. The coefficient for PS~A remains insignificant 
and is now much smaller. The P~SA coefficient is also somewhat smaller (but still significant), 
apparently as a result of absorbing the effect of higher-order terms in the original model.  

Table 3-4: Estimation results of time-based Translog cost functions 

 Model 5 Model 6 

 Est. Std. Err. Est. Std. Err. 

Output (RTM) 0.2102*** 0.0561 0.2424*** 0.0531 

Fuel price 0.1997*** 0.0016 0.1995*** 0.0016 

Labor price 0.3860*** 0.0021 0.3858*** 0.0021 

Materials price 0.4143*** 0.0031 0.4147*** 0.0031 

Capital service -0.0537*** 0.0009 -0.0536*** 0.0009 

Stage length 0.0918 0.0880 0.0979 0.0783 

Points served 0.5111*** 0.0718 0.4901*** 0.0590 

Ttot 0.4368*** 0.0725 0.4424*** 0.0687 

PS~A -0.4211 0.5167 -0.0492 0.4383 

P~SA 1.0875*** 0.3740 0.7111** 0.3201 

R2 0.9901 0.9896 

Adjusted R2 0.9885 0.9884 

Notes: *** p<0.01, ** p<0.05, * p<0.1 

 

                                                      
4 Only one among the 15 such variables has a coefficient estimate that is significant at 5% level. 
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3.1.4 Cost Impact of Delay and Buffer on Airlines 
In this sub-section, the previously estimated cost models are used to gauge the potential cost 
impact of delay and buffer on airlines, assuming these estimated models still apply to the 
improved operational scenarios described below. We choose the more robust Models 3, 4, and 6. 
Using Models 3 and 4, two scenarios are considered. In the first scenario delay against schedule is 
entirely eliminated, without changing the buffer, and in the second one we further reduce 
schedule buffer to the zero level. The new operating costs for each airline-quarter are predicted 
under the two scenarios, and compared to predicted costs at 2007 values for delay and schedule 
buffer. The difference between these new operating costs and baseline predicted values gives the 
cost of delay against schedule and the total cost of delay respectively. The difference between the 
cost of delay against schedule and the total cost of delay corresponds to the schedule buffer cost. 
Estimates for these costs for 2007 appear in the first three rows of Table 3-5.  

We also use Model 6 to investigate the airline cost under two scenarios. In the first, Ttot is set to 
be the sum of SchAct and SchNonAct time over all flights, and the values P~SA and PS~A are 
reduced to zero. Under this scenario, aircraft’s departure and arrival times exactly coincide with 
the current schedule, which contains some schedule buffer. In the second scenario, we also reduce 
Ttot to the unimpeded flight time, the calculation of which is described in section 3.1.2. Therefore, 
under this scenario all flights fly not only strictly following the schedule, but also take an optimal, 
unimpeded amount of time. As before, airline costs are predicted under these two scenarios, and 
compared to cost predictions using 2007 operational performance levels. We consider the 
difference between the original cost and the cost in the first scenario as the cost of delay against 
schedule, and the difference between the original cost and the cost of the second scenario as the 
total cost of delay. Their difference is the cost of schedule buffer. Estimates are reported in Table 
3-5. We obtain somewhat larger estimates of delay-against-schedule and total cost from using the 
time-based model than from using the delay-based model. This may be because the counterfactual 
considered for the time-based model entails perfect adherence to both arrival and departure time 
schedules, whereas the delay-based model only considers arrivals. In any case, the similar 
magnitude of the cost estimates obtained from the two models provides some cross-validation of 
the basic approach. Also buffer cost estimates from the two models are very similar—$2-2.5 
billion for the seven major airlines. 

As a first-order industry-wide estimate, we extrapolate the above cost to the entire system based 
on the portion of available seat miles (ASM) provided by the major airlines in all carriers 
reporting data to BTS. Results are also reported in Table 3-5. Although this leaves out some 
regional and commuter airlines (those whose annual operating revenue is below $20 million), 
such airlines account for a very small fraction of the total ASM, so excluding them will have little 
effect on the system-wide result. 

In our cost summary, we have elected to emphasize estimates derived from the delay-based 
model. This model features a simpler and more conventional representation of operational 
performance, has a slightly higher R2, and has lower standard errors for the relevant coefficients. 
The higher estimate derived from the time-based model is also quite plausible however, making 
the choice largely as matter of judgment. 
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Table 3-5: Airline cost estimates ($ billions), for 2007 

 
Cost category 

Delay against  
10 percentile 

feasible flight time 

Delay against  
20 percentile 

feasible flight time 

7 major 
airlines* 

Delay-based 
model 

Delay against 
schedule 3.3 3.1 

Buffer 2.6 1.9 

Total 5.9 5.0 

Time-based model 

Delay against 
schedule 6.7 6.7 

Buffer 2.4 1.8 

Total 9.1 8.5 

Industry 
wide** 

Delay-based 
model 

Delay against 
schedule 4.6 4.4 

Buffer 3.7 2.7 

Total 8.3 7.1 

Time-based model 

Delay against 
schedule 9.4 9.4 

Buffer 3.4 2.7 

 Total 12.8 12.1 
          * US Airways and American West are excluded due to merger. 
           ** Includes airlines with annual operating revenue greater than $20 million. 

 

As a final remark, we reiterate that a delay-free NAS is a limiting—and unreachable—case. As 
long as there are winds and storms, aircraft parts fail, and people make mistakes, there will be 
delays. As long as there are delays, airlines will seek to mitigate their impacts through schedule 
buffer. As a consequence, the cost estimates presented here—and elsewhere in this report-- 
should be regarded as an upper bound on the cost savings that could be obtained from improving 
the capacity and operational efficiency of the NAS at 2007 activity levels. 

3.2 Passenger Delay Cost 
The primary mission of the national air transportation system is the rapid, affordable, and safe 
transportation of passengers and cargo between geographically distant and/or remote destinations. 
Flight delay impairs this mission by increasing passenger trip times and reducing schedule 
reliability. In this section, we estimate the resulting costs to passengers in 2007. Most of the effort 
went to estimating passenger arrival delay against the ticketed schedule, which we term 
Passenger Trip Delay. We also consider the additional passenger travel time resulting from 
schedule padding. The final step was to monetize these passenger time costs. Section 3.2.1 
describes ways in which passenger trip delays can occur. Section 3.2.2 provides an overview of 
the algorithm used to compute the passenger trip delay metrics and identifies the associated data 
sources. Section 3.2.3 briefly describes the workings of the algorithm and identifies some of the 
methodological contributions made by this study. Section 3.2.4 provides the results generated by 
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using publicly available data sources and our algorithm to compute passenger trip delay 
performance for 2007. Section 3.2.5 presents estimates of additional passenger travel time from 
schedule padding, while Section 3.2.6 estimates the monetary value of the passenger delays 
computed in the previous sections. 

3.2.1 Passenger Trip Delay Causes 
Passenger Trip Delay is defined as the positive difference between the actual time of arrival of the 
passenger and the scheduled time of arrival on the ticket purchased by the passenger. It is 
analogous to flight delay against schedule; we consider the effect of schedule buffer on passenger 
delay cost later on. 

Passenger Trip Delay = max (Actual Time of Arrival – Scheduled Time of Arrival, 0) 

Passenger Trip Delay can occur as a result of one of the following scenarios: 

1. Passenger arrives late on the last ticketed flight of an itinerary. 
2. Passenger arrives late because a ticketed flight was diverted to another airport. 
3. Passenger arrives late after being re-booked on a later itinerary when a ticketed flight is 

cancelled. 
4. Passenger arrives late when the passenger misses a connection and is re-booked on a later 

itinerary. 

Scenarios 1, 2, and 3 are illustrated in the Time-Space diagrams in the Figure 3-2. Scenario 4 is 
illustrated in Figure 3-3, in which the term “hub” refers to airports where a connection is made. 

The trip delays experienced by passengers on late flights and on diverted flights (Scenarios 1 & 2) 
are proportional to the magnitude of the delay of these flights. The trip delays experienced by 
passengers that have to be rebooked due to a cancelled flight or missed connection (Scenarios 3 & 
4) are a function of the frequency and load factors (i.e. the percentage of seats filled) on other 
flights to the desired destination. As the frequency of the flights diminishes and/or the load factor 
of candidate rebooked flights increases, the trip delay experienced by these passengers typically 
increases non-linearly – and at a very high rates when load factors are high and/or the frequency 
of flights is low.  
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Figure 3-2: Time-space diagram for Scenarios 1-3 

 

 

 
 

 
Total Pax Delay1 refers to the total passenger delay experienced by the passengers on Flight 1. 
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Figure 3-3: Time-space diagram for Scenario 4 

 

3.2.2 Overview of Algorithm and Data Sources 
Figure 3-4 provides an overview of the computation of Passenger Trip Delay for each of the 
scenarios described in Section 3.2.1. The algorithm is based on the work of Bratu and Barnhart 
(2005), Wang and Sherry (2007), Sherry and Calderon-Mesa (2008), and Zhu (2009) at MIT and 
GMU.  This body of work has been extensively refined and enhanced in research performed 
specifically for this study.   

The algorithm is summarized in Figure 3-4 below, which also indicates at its top part the three 
sets of data that are required.  These are:  

1) Airline Flight Performance Data 

Airline flight performance information is required to determine flight delays for each individual 
flight, as well as diversions and cancellations of individual flights. This information is derived 
from the BTS Airline On-Time Performance database, which is reported by US certified air 
carriers that account for at least one percent of domestic scheduled passenger revenues. 

2) Aircraft Seat Capacity and Load Factor Data 

Aircraft seat capacity and load factors for each flight are required by the algorithm for rebooking 
passengers on cancelled flights and/or missed connections. This data is derived from the BTS T-
100 data-base.  

 
The scenario for passengers who miss connections: inbound flight is delayed, connecting flight 

is cancelled, or inbound flight is cancelled. 
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Figure 3-4: Overview of the algorithm 

 

3) Passenger Itinerary and Flight Load Factors 

Passenger Itineraries are estimated using aggregated, average monthly load factors from the BTS 
T-100 data-base. The algorithm for estimating passenger itineraries and load factors is described 
in section 3.2.3 below. 

The specific databases used to provide the 2007 estimates reported in Section 3.2.4 are: 

• T-100 Domestic Segments Data (U.S. Carriers) – domestic segment data aggregated by month  

• DB1B Coupons Data – a 10% sample of domestic itinerary data aggregated by quarter 

• Flight On-Time Performance Data (ASQP) – daily on-time arrival data for domestic flights 
operated by major U.S. carriers 

• Innovata Flight Offerings Data – expected flight offerings for 2007 as of January 1st, 2007 

• Proprietary Passenger Bookings Data – proprietary legacy carrier bookings data for Q4 2007 
(used for the purpose of validating the proposed approach) 

• Other Data – FAA Aircraft Registry, which includes seating capacities by carrier and aircraft 
type 

 
Data-sources and Algorithm used to compute Passenger Trip Delays. 
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3.2.3 Description of Algorithm 
This section provides a brief description of the algorithm utilized to calculate passenger delays.  
A more detailed description can be found in a technical support document for the passenger delay 
calculation algorithm.  The algorithm proceeds in three steps: 

1. Generation of potential passenger itineraries. 
2. Estimation of passenger demand allocation to each potential itinerary. 
3. Determination and rebooking of disrupted passenger itineraries. 

In the first step, we generate all potential itineraries that passengers may take based on the flight 
schedule data in ASQP and the sampled passenger itinerary data in the DB1B Coupon database.  
For the purposes of our analysis, we only include non-stop and one stop itineraries, as itineraries 
with more than one stop account for only 2.5% of the one-way trips in DB1B.  A non-stop 
itinerary is generated for every flight in ASQP, whereas a one-stop itinerary is generated only for 
valid flight pairs.  Using the 2007 ASQP and DB1B data sets, this procedure leads to the 
generation of some 270 million itineraries, of which about 7.5 million are non-stop. 

In the second step, we utilize a statistical approach to estimate the passenger demand associated 
with each of the potential itineraries.  To do so, we use one quarter of proprietary booking data 
from a large legacy carrier to estimate the passenger utility associated with itinerary features such 
as local time of departure, day of week, and connection time.  Next, we use these estimated 
utilities to calculate the probability that each itinerary would be selected.  Finally, we use the 
estimated probabilities to sample an itinerary that matches each passenger’s route.  We determine 
the number of monthly passengers traveling on each route by combining the passenger demand 
data available in T-100 and DB1B databases. The results of these three steps can then be fed into 
the Passenger Trip Delay Algorithm of GMU (or alternatively the Passenger Delay Calculator of 
MIT) to estimate total passenger delays. 

Computing these estimates of passenger bookings is necessary in order to estimate the passenger 
delays due to missed connections and to refine the estimates of delays due to cancellations and 
diversions. Historical information on passenger bookings is considered proprietary and highly 
sensitive by the airlines.  Absent such proprietary data, a good estimate of bookings based on 
approaches that utilize published data is the best that can be realistically achieved.  The approach 
described above estimates two intermediate sets of data that are then utilized to estimate 
passenger delays: (a) load factors and aircraft size for all scheduled flights on a day-of-week and 
time-of-day basis, and (b) itineraries for all passengers including connections at transfer airports. 

In the last step, the algorithm processes each individual flight, starting with the first flight in the 
period under investigation and terminating with the last flight of the period. If the flight was 
cancelled or diverted, all the corresponding passengers are rebooked to their final destinations.  
For the purpose of our analysis, we treat diversions as cancellations, because the ASQP database 
does not provide the destination of the diversion.  Diversions represent approximately 0.2% of 
total flights, so we do not expect their treatment in this approximate manner to significantly 
impact the results.  Passengers that miss connections are treated in the same manner as passengers 
on cancelled flights and are rebooked from the connecting airport to their final destination. The 
generation of estimates of delays due to missed connections had not been possible until this study 
due to the unavailability (in the public domain) of passenger itinerary data. In today’s air 
transportation system, missed connections are a very important cause of passenger delays. 

The results described in this report include both re-booking on direct (i.e. single segment) flights, 
as well as connecting (i.e. two segment) flights.  Because all flight options are not available in the 
ASQP database (e.g., non-reporting carriers) and to ensure that our overall estimates are 
conservative, we limit the amount of rebooking-incurred delay.  For passengers disrupted during 
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the day (e.g., between 5:00am and 5:00pm) we limit the rebooking delay to a maximum of 8 
hours, whereas for passengers disrupted during the evening (e.g., between 5:00pm and 5:00am), 
we limit the rebooking delay to 16 hours.  Thus, if passengers cannot be rebooked to their final 
destination, we assume their trip delay equals the maximum allowed in their case (i.e. either 8 
hours or 16 hours).  Prior to assigning to a passenger the maximum rebooking delay, we also 
attempt to rebook the passenger on carriers other than the ticketed carrier or its subcontracted 
carriers. 

Finally, delay for passengers whose itineraries are not disrupted is computed based on the 
publicly available data reporting flight delays for all scheduled commercial flights in the US.  

3.2.4 Results for 2007 
This section provides estimates of Passenger Trip Delay for January – December 2007. The 
analysis is based on data provided by BTS for the airlines with more than 1% of enplanements 
per annum and the MIT algorithm for estimated passenger itineraries and flight load factor. 

In 2007, 7.45 million flights provided transportation for 487.2 million passengers on 4437 direct 
routes between 267 airports. The average number of flights between O/D pairs in 2007 was 4.57. 
The total estimated delay accrued by passengers due to delayed flights, cancelled flights, and 
missed connections was 28,539 years. The monthly differences, as reported in Tables 3-7 and 3-8, 
are due to seasonal weather and traffic factors. Despite these influences, results are fairly 
consistent throughout the year. The average delay experienced, computed for all the passengers in 
2007, was 31 minutes per passenger. 

 

Table 3-6: Passenger delay estimates for calendar year 2007 

 2007 

Number of Flights Operated 7,455,458 

Number of Passengers Boarded 487,197,014  

Percentage of Flights Delayed 15+ Minutes 24.2% 

Percentage of Flights Cancelled 2.2% 

Average Delay for Operated Flights 15.0 

Average Delay for all Passengers 30.8 

Number of Disrupted Passengers 16,419,439  

Percentage of Passengers Disrupted 3.4% 

- Disrupted due to Cancellations 69.7% 

- Disrupted due to Missed Connections 30.3% 

Average Delay for Non-disrupted Passengers 15.9 

Average Delay of Disrupted Passengers 456.9 

- Due to cancellations 68.5% 

- Due to missed connections 31.5% 
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Table 3-7: Monthly passenger delay estimates for the 1st and 2nd calendar quarters of 2007 

 January February March April May June 
Number of Flights Operated 621,559 565,604 639,209 614,648 631,609 629,280 
Number of Passengers Boarded 36,351,929  34,397,205  42,640,307  41,407,749  42,679,424  43,924,679  
Percentage of Flights Delayed 15+ Minutes 24.2% 28.0% 23.9% 22.3% 20.8% 28.8% 
Percentage of Flights Cancelled 2.5% 4.5% 2.6% 1.8% 1.1% 2.7% 
Average Delay for Operated Flights 14.1 17.2 14.9 13.5 12.3 19.6 
Average Delay for all Passengers 28.4 43.0 34.6 27.3 22.6 43.0 
Number of Disrupted Passengers 1,318,378 1,948,863 1,675,589 1,201,043 946,770 1,931,463 
Percentage of Passengers Disrupted 3.6% 5.7% 3.9% 2.9% 2.2% 4.4% 
- Disrupted due to Cancellations 72.5% 79.1% 74.9% 69.1% 62.5% 70.8% 
- Disrupted due to Missed Connections 27.5% 20.9% 25.1% 30.9% 37.5% 29.2% 

Average Delay for Non-disrupted Passengers 14.3 18.0 15.8 14.6 13.1 21.6 
Average Delay of Disrupted Passengers 402.9 459.3 493.8 453.5 439.6 508.5 
- Due to cancellations 70.7% 79.6% 75.9% 68.1% 59.5% 70.2% 
- Due to missed connections 29.3% 20.4% 24.1% 31.9% 40.5% 29.8% 
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Table 3-8: Monthly passenger delay estimates for the 3rd and 4th calendar quarters of 2007 

 July August September October November December 
Number of Flights Operated 648,560 653,279 600,187 629,992 605,149 616,382 
Number of Passengers Boarded 45,613,812 44,915,170 37,400,161 40,784,536 39,087,925 37,994,117 
Percentage of Flights Delayed 15+ Minutes 27.8% 26.2% 17.1% 20.5% 18.8% 31.9% 
Percentage of Flights Cancelled 2.1% 1.9% 1.1% 1.2% 1.0% 3.5% 
Average Delay for Operated Flights 18.1 16.8 10.1 12.0 10.9 19.8 
Average Delay for all Passengers 37.0 33.6 18.5 21.1 18.6 41.0 
Number of Disrupted Passengers 1,664,301 1,501,007 777,976 868,813 750,117 1,835,119 
Percentage of Passengers Disrupted 3.6% 3.3% 2.1% 2.1% 1.9% 4.8% 
- Disrupted due to Cancellations 67.2% 66.0% 63.4% 60.5% 60.8% 71.7% 
- Disrupted due to Missed Connections 32.8% 34.0% 36.6% 39.5% 39.2% 28.3% 

Average Delay for Non-disrupted Passengers 19.8 18.2 10.6 12.8 11.4 20.2 
Average Delay of Disrupted Passengers 491.8 478.1 391.7 402 387.2 449.4 
- Due to cancellations 65.5% 64.5% 57.1% 55.1% 55.8% 71.3% 
- Due to missed connections 34.5% 35.5% 42.9% 44.9% 44.2% 28.7% 
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3.2.5 Passenger Buffer  

We employ an aggregate approach to quantify passenger buffer. As discussed in section 3.1, airlines 
routinely build buffer into flight schedules. Once a flight is flown, each passenger on that flight will have 
to bear this extra amount of time. In order to be consistent with the airline cost model, we employ the 
same “Avg. buffer10” measure. The same airline-quarter data as in section 3.1 are used. For each airline-
quarter observation, the average buffer time per flight is multiplied by the average number of seats per 
flight and the load factor, and then by the total number of flights flown. Values are summed up across all 
airlines and quarters. For 2007 the total passenger buffer amounts to 9,526 million minutes, or an 
equivalent 159 million hours. 

3.2.6 Monetary Value of Passenger Delays 

There exist numerous studies about how travelers value their time during the trip. One way to obtain the 
value of travel time is by using wage rates. Economic theories postulate that individuals will adjust the 
amount of time they devote to work and leisure such that an additional small increment of either may be 
valued at the wage rate. More sophisticated models recognize that constraints on the ability of workers to 
alter work schedules or the conditions under which time is devoted to either work or leisure can cause the 
value people place on an incremental gain or loss of time to deviate, perhaps significantly, from the wage 
rate (GRA, 2004, Small, 1992). Alternative approaches have been adopted to infer passenger value of 
travel time. One intensively utilized method is based upon random utility theory and mode/itinerary 
choice models, where most popular are the multinomial logit model and its variants. A few studies 
explicitly investigate how passengers value air travel delays, prominent among which are Adler et al. 
(2005) and Forbes (2008). 

The Department of Transportation provides recommended values of travel time in their departmental 
guidance (DOT, 2003). The values are based on a survey conducted by the Air Transportation 
Association in 1998 and updated it with changes in median annual income from 1998 to 2000. Certain 
percentage rates are factored in to generate the value of time for different travel purposes. The TDI team 
follows this guidance and uses weighted average across business and leisure travelers, inflated to 2007 
U.S. dollars. The number used here is the same as the one adopted in JEC (2008), valued at $37.6/hour. 

The above value of travel time is then applied to passenger buffer and delay against schedule. The TDI 
team finds that the total passenger delay cost amounts to $15.4 billion, with breakdown detailed in Table 
3-9.  

 

Table 3-9: Passenger cost estimates (in $ millions), for 2007 

Delay Category 
Delay Cost 

(million dollars) 

1.  SB (schedule buffer) 5,969 

2. PDS (passenger delay against schedule) 
    2a. Delay due to delayed flights 
    2b. Delay due to flight cancellations 
    2c. Delay due to missed connections 
Total estimated PDS (2a+2b+2c+2d) 

 
4,699 
3,221 
1,480 
9,400 

Total 15,369 
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3.3 Estimate of Costs of Voluntary Passenger Schedule Adjustments Due to Anticipated 
Schedule Delays 

3.3.1 Data Sources 

In order to measure the extent to which delay and unpredictability cause travelers to leave the night before 
their scheduled meetings we need information on the timing of their departures. The aim of this piece of 
the project is to understand how delay and other variables such as cancellations and arrival time influence 
passengers’ decision of what time to fly.  In order to undertake this analysis we require flight-level data 
describing arrival and departure times. 

We focus on simple round trips. We sample itineraries that are contained entirely within the confines of a 
single work week, which we define as the period from midnight Monday morning through midnight 
Friday evening.  

We categorized the outbound departure window as follows: 

• Early (Midnight to 8am) 
• AM Peak (8am to 10am) 
• Midday (10am to 4pm) 
• PM Peak (4pm to 7pm) 
• Evening (7pm to Midnight) 

Information on the timing of departures cannot be obtained from publicly available data sources. The on-
time arrival database maintained by the FAA provides a wealth of information about aircraft arrivals, but 
no information about the itineraries of the passengers traveling on those aircraft. The OD1A and OD1B 
databases provide a wealth of information about passenger itineraries, but virtually no information about 
the timing of passenger travel (other than the quarter in which the trip took place). In order to carry out an 
empirical study of the effects of delays on departure timing, therefore, we needed to identify a new source 
of data.  

That source of data turned out to be the Sabre system. Sabre is the oldest and the largest of the original 
airline computerized reservation systems.5

Sabre covers a large but not necessarily representative fraction of the total universe of air travel. Missing 
from Sabre are tickets purchased from other GDS systems, from dedicated airline websites, or from 
certain new electronic distribution channels such as Priceline. As a result, Sabre tends to under-represent 
low cost carriers and low cost fares. It tends to over-represent travel booked through travel agencies, and 
corporate travel. The distinctive footprint of Sabre complicates the task of generalizing results based upon 
Sabre data. At the same time, however, that distinctive footprint makes Sabre a well-equipped and 
suitable laboratory for investigating hypotheses about business travel behavior. 

  

Sabre contains data on passenger itineraries as booked. Changes made prior to departure are captured as 
long as they are made through Sabre, which generally requires that they be made by the travel agency that 
originally booked the flight. Changes made at the airport or directly through the airline may not be 
reflected in the Sabre data. Sabre records contain complete information on dates and times of departures 
and arrivals of all flights within a passenger’s itinerary. The system also captures the carrier, the fare, and 

                                                      
5 These systems are now referred to as Global Distribution Systems, or GDS. 
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the airport endpoints of each flight segments. Sabre retains the full detail on each booking for a period of 
three years. Confidentiality provisions in Sabre’s agreements with participating airlines restrict the 
information it is allowed to release to third parties. For the most part, it is prohibited from releasing 
individual itinerary data. It can however, provide aggregated summaries that contain a considerable 
amount of detail. 

3.3.2 Structural Model Specification 

We model choice of departure window as a standard discrete choice problem. We assume that a 
passenger, having selected an airport pair, seeks to maximize utility across departure windows. We model 
utility as being a function of the time at which the passenger can expect to arrive at his or her destination 
and of the delay the passenger can expect to experience. 

Let j be an index of departure windows. At a high level, we can characterize the utility associated with 
choosing departure window j as follows: 

Uj = Dj + Aj + Lj + ε                                  (Equation 3-1) 

where: 

Dj is the disutility associated with schedule delay. 
Aj is the disutility associated with the arrival time dictated by choosing departure window j. 
Lj is the disutility associated with arriving late. 
ε is a random variable. 

3.3.2.1 Schedule Delay 

The more departures there are, the greater the chances are of finding a departure at a convenient time. The 
schedule density, defined as the number of flights per unit of time, varies over the course of the day. All 
else equal, a passenger will desire a higher schedule density. However, the value of an additional flight 
declines as the number of flights increases and the schedule becomes saturated. Thus, a reasonable 
specification for schedule delay is be given by: 

j
j ND λ=     (Equation 3-2) 

Where Nj is the number of scheduled departures per minute6

3.3.2.2 Arrival Time Disutility 

 for that route and quarter and λ is an 
estimated coefficient. For each cell, we record the number of flights found in the On Time Performance 
dataset. 

Travelers will generally prefer to arrive at some point during the business day. We will assume that there 
is some disutility associated with arriving during each hour interval of the destination day. Call these πi. 
Let the set of dummy variables dji equal 1 if a departure during window j implies an arrival in hour i, and 
0 otherwise. We can calculate dji from Tj, the scheduled flight time, and the time required to exit the 
airport. 
                                                      
6 It is important to scale Nj by the length of the departure category in order to make the Dj’s comparable across 
departure categories. This could be accomplished by dividing the number of flights by the number of hours in 
the departure category; we divide by the number of minutes simply to produce regression coefficients of a 
magnitude similar to those on our other variables. Because this is a mere scaling, it has no impact on other 
regression coefficients or on the measured significance of any of our results. 
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We can then express the arrival time disutility as: 

∑=
i

jiij dA π      (Equation 3-3) 

where the πi are estimated coefficients. 

For each cell, we calculate arrival probabilities for each of seven time windows, measured in local time 
for the destination airport: the two-hour increments from 6am-8am, 8am – 10am, 10am – 12pm, 12pm – 
2pm, 2pm – 4pm, and 4pm – 6pm, and the six hour increment from 6pm – 12am. These probabilities are 
calculated from the scheduled arrival times from the On Time Performance dataset for each cell. That is, 
if, for a given quarter, route and departure window there are 100 flights in the On Time Performance 
dataset, and 25 of them arrive between 10am and 12pm, then we simply assign a 25% probability of 
arrival within that time window for that cell; if 27 of them arrive between 12pm and 2pm we assign a 
27% probability of arrival within that time window; etc. 

3.3.2.3 Late arrival disutility 

To account for late arrival disutility we will need to divide the time period around the scheduled arrival 
time into a series of time intervals. Let k be an index of these intervals. In our analysis, we use: 

k = 1 implies early or on-time, 

k = 2 implies arrival more than half an hour late 

We measure the probability with which a traveler experiences delay by calculating the fraction of flights 
in each year, quarter, route, and departure category that fall into each delay interval. Define the set of 
variables gjk to equal the probability of arriving within delay interval k for passengers in departure 
category j.  

The late arrival disutility, then, is then given by: 

∑=
k

jkkj gL γ             (Equation 3-4) 

where the γk’s are estimated coefficients.  

We represent lateness as the probabilities of being late by various amounts, based on the empirical 
distribution of delay observed in the On Time Performance Dataset. Thus, we calculate the percentage of 
flights that arrived early and the percentage that arrived more than half an hour late. We employ the four-
quarter lag of observed delay, specific to the relevant year, quarter, and O-D pair. 

We estimate this model as a standard conditional logit model, in which the probability of selecting a given 
departure window is a function of its characteristics and those of the other departure windows available to 
a passenger traveling in a given year, quarter, and origin-destination pair. 

3.3.3 Results 
We present our econometric results in Table 3-10.  

We observe an appropriately negative sign on the inverse of flights per hour. The pattern of coefficients 
observed on our arrival time windows suggests that passengers prefer to arrive early in the morning or 
late in the workday. The coefficients on early and late arrival are measured relative to the implicit 
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coefficient of zero on the excluded category of lateness, from on time arrival to half an hour late. The 
implication is that passengers experience a small amount of disutility for early arrival (which can cause 
them to have to wait for rides or to meet business contacts), and a substantially larger level of disutility 
for arrival more than half an hour late. 

 

Table 3-10:  Conditional logit regression results 

 
 

3.3.4 Calculation of VDTA Costs 

To calculate the number of passengers who make Voluntary Schedule Time Adjustments made in 
response to delay we set all delay probabilities to zero and use the results shown in Table 3-11 to 
recalculate departure window shares. 

Left-Hand Variable is Choice of Departure Window

Observations (Trips) = 4,258,827   

Variable

Inverse of Flights per Hour -0.376***
(0.002)         

Arrival 6am-8am 2.044***
(0.021)         

Arrival 8am-10am 2.020***
(0.020)         

Arrival 10am-12pm 1.556***
(0.020)         

Arrival 12pm-2pm 1.455***
(0.021)         

Arrival 2pm-4pm 1.836***
(0.020)         

Arrival 4pm-6pm 2.311***
(0.020)         

Arrival 6pm-12am 0.839***
(0.020)         

Cell-Specific Lateness:  Early, Lag 4 qtrs -0.0641***
(0.009)         

Cell-Specific Lateness: Greater than 30 Minutes Late, Lag 4 qtrs -0.204***
(0.014)         

Notes:
   Arrival and Lateness variables are probabilities expressed in decimal terms, i.e. 5% =  0.05.  
   Arrival prior to 6am and lateness between 0 and 30 minutes are excluded.
   *** p<0.01, ** p<0.05, * p<0.1
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Table 3-11:  Predicted schedule adjustments between departure windows without delay 

 
 

We calculate the extent of schedule shifting one departure window at a time.7

In order to translate these adjustments into hours (and ultimately, dollars) lost, we must make an 
assumption concerning the departure window from which these passengers are switching. We assume that 
they are switching from preceding departure window – e.g., from Early to AMPeak, from AMPeak to 
Midday, and so on.  Thus, we assume that the net change in each departure window under the assumption 
of no delay is equal to the gross increase for that departure window less the gross increase for the 
following departure window.   

 For each departure window, 
we calculate the number of trips predicted in our regression sample with observed delay. We then 
calculate the number predicted for each departure window if the probability of delay greater than half an 
hour is set to zero for that departure window only.  The difference between these two is the predicted 
gross increase for the departure window.    

The first two columns of Table 3-11 present the results of this exercise. The second column is the net 
predicted number of trips in the departure window with no delay.  The third column is the predicted gross 
increase for the departure window. Of course, in each case, with delay set to zero, the gross increase for 
each departure window is positive.  The right-most column of Table 3-11 expresses the predicted gross 
increase in demand for each departure window as a percentage of the preceding window (from which, we 
continue to assume, the gross increase is pulled). 

We next apply these estimates to the universe of passenger air travel represented by the DB1B 10 percent 
ticket sample. Table 3-12 presents the total number of passengers represented in this dataset in each 
quarter of 2006-2008, and the number departing in each departure window calculated from the 
distribution observed in our Sabre dataset. 

 

                                                      
7 We carry out the calculation one departure window at a time in order to be able to observe the gross number 
of shifts. If we were to recalculate all windows simultaneously we would observe the net results of people 
shifting out of one departure window to the next, and shifting into that same departure window from the 
previous window. 

Voluntary Time Adjustment

Departure Category

Predicted 
Trips in 
Sample

Predicted Trips in 
Sample - No Delay in 

Departure Window
Predicted Gross 

Increase

Difference as Percent of 
Predicted Trips in Previous 

Departure Window
Early 848,661         843,745                         5806 3.03%
AMPeak 900,058         883,949                         10722 1.26%
Midday 1,666,114      1,669,603                      26832 2.98%
PMPeak 652,072         666,937                         23343 1.40%
Evening 191,922         194,594                         8478 1.30%
Total 4,258,827      4,258,827                      

Notes
The increase in the predicted number of trips without delay is equal to the predicted number of trips with 
delay plus the predicted gross increase less the predicted gross increase of the following period - i.e., it
measures the net  change, so that the total number of trips predicted remains constant
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Table 3-12:  Departures by quarter and departure window, 2006-2008 

 
 

We were able to identify an empirical study presenting estimates of how traveler value of time varies over 
the course of the day.8  See Table 3-13. We rely on these estimates in our calculation, so that the value of 
time we express is in terms of the hourly wage of a ‘representative passenger’.9

 

 

Table 3-13: Value of time lost to voluntary departure time adjustment 

 

 

We assume that the time saved by a passenger switching departure category is the difference between the 
mean departure times of the relevant windows, as measured by the flights in the On Time Performance 
dataset. We treat passengers that switch from an evening departure to an early departure the next morning 
                                                      
8  Mehndiratta, Shomik Raj, 1996, “Time-of-Day Effects in Inter-City Business Travel,” Institute of 
Transportation Studies at UC Berkeley Dissertation Series. 
9  The hourly wage we employ is that measured for private sector production workers in the Bureau of Labor 
Statistics’ Consumer Expenditures Survey, which averages $17.42 over 2006-2008. 

[1] [2] [3] [4] [5] [6]

Year Quarter
DB1B 

Passengers
Early 

Departures
AMPeak 

Departures
Midday 

Departures
PMPeak 

Departures
Evening 

Departures

2006 1 47,442,475 12,637,897 11,773,993 15,361,202 5,506,529 2,162,853
2006 2 53,492,824 14,249,611 13,275,533 17,320,220 6,208,778 2,438,682
2006 3 50,879,894 13,553,569 12,627,072 16,474,190 5,905,502 2,319,561
2006 4 51,289,444 13,662,666 12,728,711 16,606,797 5,953,037 2,338,232
2007 1 49,055,672 13,067,626 12,174,347 15,883,533 5,693,769 2,236,397
2007 2 55,655,455 14,825,700 13,812,242 18,020,449 6,459,789 2,537,274
2007 3 53,250,926 14,185,173 13,215,500 17,241,897 6,180,702 2,427,654
2007 4 52,523,820 13,991,484 13,035,052 17,006,470 6,096,308 2,394,506
2008 1 50,282,916 13,394,544 12,478,917 16,280,897 5,836,212 2,292,346
2008 2 54,944,882 14,636,415 13,635,896 17,790,376 6,377,315 2,504,880
2008 3 50,415,908 13,429,971 12,511,922 16,323,958 5,851,648 2,298,409
2008 4 47,863,452 12,750,038 11,878,469 15,497,509 5,555,391 2,182,045

Total 617,097,668 164,384,693 153,147,656 199,807,498 71,624,982 28,132,838

[1] = DB1B 10% Ticket sample multiplied by 10 to obtain total population estimate; see also Table 5
[2] = [1]*26.6%, percent of Sabre Bookings with Early Departures, from Table 8
[3] = [1]*24.8%, percent of Sabre Bookings with AMPeak Departures, from Table 8
[4] = [1]*32.4%, percent of Sabre Bookings with Midday Departures, from Table 8
[5] = [1]*11.6%, percent of Sabre Bookings with PMPeak Departures, from Table 8
[6] = [1]*4.6%, percent of Sabre Bookings with Evening Departures, from Table 8

Activity

Value of Time as 
Multiple of Average 

Hourly Wage
Leisure 0.93                          
Work 1.86                          
Sleep 5.67                          
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somewhat differently, reducing the difference between these two departures by eight hours to allow for 
time spent sleeping. 10

 

  Table 3-14 shows the average departure time associated with each departure 
window across our three year sample. 

Table 3-14: Mean departure time, 2006-2008 

 

 

We assume that a passenger that adjusts from an AMPeak departure to an Early departure loses sleep 
time, and that a passenger that adjusts from an early departure time to a departure the night before loses 
leisure time. All others lose work time. Based on these assumptions, we estimate of the cost to passengers 
of voluntary departure time adjustment. These are presented in Table 3-15. 

In columns 1-5 of Table 3-15, we apply our estimates of the percentage of passengers in each departure 
window that would adjust their schedule in the absence of delay to the passenger counts in Table 3-12. In 
column six we translate these passenger counts into hours lost to voluntary departure time adjustment. 
Column 7 further translates these estimates of time lost to delay into the dollar value of that time. Finally, 
in column 10, we present our estimates of passenger costs assuming that, in addition to the value of the 
time lost to voluntary departure time adjustment, passengers who travel the night before their preferred 
departure also incur the cost of a one-night stay in a hotel and a meal on the road. 

 

                                                      
10 This implicitly assumes that the passenger is indifferent between sleeping in his or her own bed and one on 
the road. 

Departure Category Mean Departure Time

Early 6:47 AM
AMPeak 8:54 AM
Midday 12:57 PM
PMPeak 5:26 PM
Evening 8:23 PM
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Table 3-15:  Estimates of cost of voluntary time adjustment 

 

 

3.4 Capacity Induced Schedule Delay (CSD) 
In following their business models, airlines tend to generate “peaked” schedules. The two reasons that 
stand out most clearly are:  

i) to support a large number of low delay passenger connections as part of a banking operation;  

ii) to satisfy the natural hourly peaks in customer demand over the course of a day (especially 
for business customers). 

As the number of scheduled flights gets closer to the runway capacity constraints, airlines may have to 
change their schedule, by moving flights to a less congested time of day. That is, capacity constraints may 
force a “flattening” of schedules. De facto flattening can also arise in other ways. For example even if 
flight schedule is peaked, actual times may be flattened as a result of delays. Here, however, our focus 
here is on flattening of the actual schedule. Thus, we hypothesize that there is a negative relationship 
between the degree to which airline schedules are peaked and the capacity utilization of an airport. To test 
this hypothesis and quantify this relationship we first need to develop metrics for both “peakedness” (or 
schedule variability) and airport capacity utilization. We quantify the relationship between them using a 
regression model. We then use this model to address the problem of estimating the cost impact of capacity 
constraints on schedule delay. Specifically, this regression model allows us to estimate what the 
peakedness measure would be in the absence of a capacity constraint for the airports analyzed. We then 
estimate the decrease in schedule delay that passengers would experience when a schedule with the higher 

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Year Quarter

Early to 
AMPeak 
Switches

AMPeak 
to Midday 
Switches

Midday to 
PMPeak 
Switches

PMPeak 
to Evening 
Switches

Evening to 
Next-Day 

Early 
Switches

Hours 
Saved

Passenger Time 
Costs

Average 
Hotel Cost

Meal 
Cost

Total Passenger 
Costs

Estimated Percent Switching 1.26% 2.98% 1.40% 1.30% 3.03%

2006 1 159,674 350,997 215,219 71,592 65,434 3,082,220 111,961,779$       125$         40$     122,758,433$       
2006 2 180,037 395,759 242,666 80,723 73,779 3,492,743 127,624,505$       125$         40$     139,798,059$       
2006 3 171,243 376,428 230,813 76,780 70,175 3,320,008 122,416,630$       125$         40$     133,995,551$       
2006 4 172,621 379,458 232,670 77,398 70,740 3,371,151 126,451,345$       125$         40$     138,123,469$       
2007 1 165,103 362,932 222,537 74,027 67,659 3,197,441 122,352,409$       132$         40$     133,989,800$       
2007 2 187,315 411,759 252,476 83,986 76,762 3,626,193 141,219,140$       132$         40$     154,422,185$       
2007 3 179,223 393,970 241,569 80,358 73,445 3,457,039 137,555,107$       132$         40$     150,187,731$       
2007 4 176,775 388,590 238,270 79,260 72,443 3,435,208 137,956,074$       132$         40$     150,416,208$       
2008 1 169,233 372,011 228,104 75,879 69,352 3,271,544 131,917,892$       129$         40$     143,638,364$       
2008 2 184,924 406,502 249,253 82,914 75,782 3,582,831 144,457,866$       129$         40$     157,264,998$       
2008 3 169,681 372,995 228,708 76,079 69,535 3,294,334 133,877,181$       129$         40$     145,628,652$       
2008 4 161,090 354,111 217,129 72,228 66,015 3,112,303 127,038,268$       129$         40$     138,194,785$       

Total 2,076,919 4,565,514 2,799,414 931,223 851,122 40,243,016 1,564,828,196$    1,708,418,237$    

[1] = Early Departures (Table 11)*1.26%, percent switching from Early to AMPeak with no AMPeak delay
[2] = AMPeak Departures (Table 11)*2.98%, percent switching from AMPeak to Midday with no Midday delay
[3] = Midday Departures (Table 11)*1.4%, percent switching from Midday to PMPeak with no PMPeak delay
[4] = PMPeak Departures (Table 11)*1.3%, percent switching from PMPeak to Evening with no Evening delay
[5] = Evening Departures (Table 11)*3.03%, percent switching from Evening to Next-Day Early with no Early delay
[6] = Total hours saved, assuming the mean departure time within each year, quarter, and departure window.  

Hours saved for switching from Evening to Next-Day Early are equal to the difference in mean departure time less eight hours sleep time.
[7] = Total Passenger Time Costs saved, assuming Mehndiratta values for value of time

Switches from AMPeak to Midday, Midday to PMPeak, and PMPeak to Evening departures are assumed to save 'Work' time.
Switches from Evening to Next-Day Early departures are assumed to save 'Leisure' time.
Switches from Early to AMPeak departures are assumed to save 'Sleep' time.

[8] = Average Hotel Cost.  Source:  National Business Travelers' Association 2009 Business Travel Overview and Cost Forecast
[9] = Assumed Meal Cost
[10] = [7] + ([8] + [9])*([5]), i.e. total costs including hotel and meal costs for incremental overnight stays
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level of peakedness replaces the current schedule (with the lower level). By converting this schedule 
delay savings to a cost savings we are able to place a monetary value on capacity-induced schedule delay.   

To perform the analysis outlined, we start by measuring the number of scheduled flight operations 
(arrivals and departures) in each fifteen-minute period at individual airports.  The variance of the number 
of flights per 15-minute period computed over an entire day can be viewed as a measure of the peaking of 
the schedule. While variance is a good measure of peakedness, it increases with the number of operations 
even if the pattern of the schedule remains unchanged. To account for this scale effect, we consider the 
coefficient of variation (CVAR) as our metric for the peaking of the schedule: 

CVAR = σ / µ (Equation 3-5) 

where  µ = mean number of operations per 15 minute period, 

σ2 = variance in number of operations per 15 minute period.  

Figure 3-5 illustrates the average value of this metric for both New York’s LaGuardia Airport (LGA) and 
Cincinnati/Northern Kentucky International Airport (CVG) for the month of August, 2007.  Note that the 
CVG profile has much more volatility (peaks and valleys) and has a correspondingly higher CVAR:  
1.2565 vs 0.2883 at LGA. 

A capacity utilization metric should indicate the degree to which an airport is operating close to its 
runway capacity for a given day. The generic definition of utilization is the ratio of actual usage to 
capacity. We note that airport capacity can vary from day to day and over the course of a day, largely as a 
result of changing weather conditions. Two readily available and reasonably accurate measures of airport 
arrival and departure capacity are the airport acceptance rate (AAR) and the airport departure rate (ADR). 
These are nominal assessments made by FAA specialists of the number of flights that will be able to land 
or take off (respectively) in a specific hour given the weather conditions and runway configuration. Data 
are available for flight arrival (“wheels on”) and departure (“wheels off”) times and these would seem to 
be most appropriate data sources to base measures of airport usage within each hour. Within our analysis 
we consider arrival utilization (# arrivals/AAR), departure utilization (#departures/ADR) and overall 
utilization ([#arrivals + #departures]/[AAR + ADR]). We should note that the actual number of operations 
performed (arrivals or departures) can indeed occasionally exceed the AAR or ADR in a given 15 minute 
time period, since conditions can vary and the fleet mix can be more or less favorable. We compute a 
daily metric, which is defined to be the total number of operations (arrival, departure, and combined) 
divided by the total capacity. The analysis is performed on a monthly basis so that we obtain results for a 
given airport and month. The ratios are computed for each Tuesday, Wednesday, and Thursday in the 
month based on operations between 6 AM and 10 PM. As will be discussed later, results were obtained 
for several months in 2007. 
 

 
Figure 3-5:  CVAR Scheduled Departures for CVG and LGA 
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To illustrate the data compiled see Figures 3-6 and 3-7.  ADR and actual departure count are plotted for 
both LGA and CVG per quarter hour over the course of a day; this is the profile for the month of August, 
2007 created by process described above.  Note that, on an aggregate level, the counts for LGA are much 
closer to the ADR than for CVG, which results in a higher utilization metric (0.9076 for LGA vs. 0.3303 
for CVG). 

        

 
Figure 3-6: Capacity (AAR) utilization for LGA 

 

 
Figure 3-7: Capacity (AAR) utilization for CVG 

 

We developed a regression model to evaluate the relationship between our capacity utilization metric and 
the peaking metric. Generalized linear regression was used to handle auto-correlation in the residuals with 
differing moving average lag periods (denoted as “q”) between 0 and 9.  We picked the model that had 
the best fitness (using Bayesian Information Criterion measure of model fitness).  Results are shown in 
Table 3-16 for the departure capacity model. We found that an airport-specific model showed the best 
results with many, but not all, airports demonstrating a significant relationship.  Note that our hypothesis 
is confirmed by a negative relationship, i.e. CVAR decreases as utilization increases.  In the table, β1 
refers to estimated regression coefficient for the departure capacity utilization metric. We have models for 
arrivals, departures, and combined arrivals and departures.  While all generally confirmed our hypothesis, 
there are several airports in each case where the relationship is not confirmed.   
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Table 3-16: Regression results for departure model 

Airport q β1 p-value Constrained? Airport q β1 p-value Constrained? 

ATL 7 0.1650 0.1796 No LGA 2 -0.1835 0.0029 Yes 

BOS 1 -0.3559 0.0000 Yes MCO 1 -0.4304 0.0022 Yes 

CVG 3 0.1945 0.0214 No MIA 3 0.0313 0.7489 No 

DAL 1 -0.0914 0.2336 No MSP 1 0.0912 0.1270 No 

DCA 5 0.0594 0.1827 No OAK 6 0.0032 0.9537 No 

DEN 3 -0.2057 0.0446 Yes ORD 4 -0.5459 0.0000 Yes 

DFW 1 0.3141 0.1296 No PDX 6 0.0439 0.5370 No 

DTW 2 -0.0770 0.2820 No PHL 4 -0.4744 0.0093 Yes 

EWR 1 -0.2881 0.0019 Yes PHX 5 0.0068 0.9368 No 

IAD 5 -0.2425 0.0164 Yes SAN 2 -0.2137 0.0013 Yes 

IAH 1 -0.2085 0.0349 Yes SEA 4 -0.1046 0.1220 No 

JFK 4 -0.2197 0.0028 Yes SFO 5 -0.2793 0.0093 Yes 

LAS 8 -0.0997 0.0327 Yes SLC 5 -0.1691 0.0071 Yes 

LAX 4 -0.2754 0.0000 Yes STL 2 0.7307 0.0000 No 

 

In addition to confirming our hypothesis, the regression models allow us to estimate the CVAR when the 
utilization is zero (or close to zero).  This corresponds to the lack of an airport capacity constraint.  Thus, 
for an airport where the model results were significant we could measure the present-day utilization 
metric and CVAR value and then use the model to estimate CVAR under zero-utilization. This provides 
an estimate of what CVAR would be today in the absence of a capacity constraint.  

The next step in the process we outlined at the beginning of this section is to associate a schedule with the 
CVAR values estimated to occur when the capacity constraint is eliminated. A comparison between this 
projected schedule and the current schedule will form the basis of our schedule delay reduction estimate. 
Figure 3-8 illustrates our model for constructing a schedule that achieves the zero-utilization CVAR value 
from the existing schedule.  The algorithm is driven by a parameter γ, which partitions the points in the 
existing schedule into “peaks” and “valleys”.  All peaks are increased by a constant factor α and all 
valleys are decreased by a constant factor β. Given γ,  α and β are determined by the two constraints that 
insure the new schedule hits the target CVAR and has a number of operations equal to the existing total 
number of operations.  Of course, each  γ will produce a different schedule and so we may “optimize” the 
schedule chosen over possible γ values. We chose an approach that minimizes the cost of the flight 
movements required to convert the existing schedule into the projected one.  We will defer discussing the 
cost of flight movements until after describing our passenger schedule delay model. The goal of the 
schedule construction is that the new schedule should be “similar” to the existing schedule but have the 
higher CVAR value.  Figure 3-9 gives an example of the application of this procedure.  
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Figure 3-8:  Schedule adjustment algorithm driven by parameter γ 

 

 
Figure 3-9:  Result of schedule adjustment algorithm applied to ORD departures  

data for August, 2007.  Actual (constrained) schedule had CVAR=0.3940; projected  
schedule had CVAR=0.8056, which was the value estimated by the regression model. 

 

The final step in the process outlined earlier is to calculate the cost savings incurred by moving from the 
existing schedule to the “unconstrained” schedule. We use an approach that estimates the passenger 
benefits associated the reduction in schedule delay. (We do not expect airlines costs to be greatly affected 
by the change in schedule; if anything increases in scheduling peaking would increase airline costs.) Prior 
research has investigated issues related to schedule delay in air transportation and, in particular, the cost-
per-unit time of schedule delay has been estimated for both leisure and business travelers (e.g. Adler et al., 
2005). 

In order to develop an estimate of the schedule delay impact of moving from one schedule to another as in 
Figure 3-9, let us consider the context of an entire schedule.  We start by discretizing time and setting a 
minimum move size. Here we use 15 minutes (since this is the threshold at which a late flight is called 
delayed, it is reasonable to use it as a minimum length for a flight movement considered noticeable to a 
passenger).  Now define xi as the number of flights that are moved by i (15 minute) intervals in order to 
convert the original schedule to the unconstrained schedule.  Also define δi = 15 i. The analysis provided 
in our technical support document for capacity induced schedule delay shows that we can write the 
schedule delay savings incurred by converting the original schedule to the unconstrained schedule as: 

∑i K δi
2/T xi (Equation 3-6) 

where K is an estimate of the number of passengers per flight and T the headway between flights so that 
K/T is an estimate of passenger demand density. The intuition behind this expression is that the number 
of passengers affected by a move of length δi is δi K/T and the schedule delay increase is δi.  It is 

γ 
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interesting to note that this expression is quadratic in δi, the length of a flight movement.  This implies 
that, in the process of searching to find a minimum cost set of flight movements needed to convert the 
original schedule to the unconstrained schedule, we should employ an objective function that is quadratic 
in the length of a flight movement. We were able to do this in structuring our γ-search procedure. 

We analyzed data from several airports for August of 2007.  Results are given in Table 3-17.  We used the 
values from Adler et al. (2005) to determine the cost of schedule delay.  Taking a weighted average of 
these two numbers, we obtain $15.77 per hour of schedule delay.  This was used to convert delay to 
dollars. We computed average values of K and T for the studied airports.  The airport-wide values were 
obtained based on a weighted average of city pair market values. Weighting was based on the number of 
passengers served in that market.  The passengers served in a market and the average number of 
passengers per flight were obtained by multiplying the respective aircraft size by the average load factor 
for that month and airport.  These numbers give us some indication of the overall magnitude of the cost 
impact of this component of the changes in the timing of airline schedules.  For example, the average 
monthly value for the airports studied is about $4M and the annual value about $60M.  Thus, the annual 
NAS-wide value considering a comprehensive set of airports exceeds seven hundred seventeen millions 
of dollars. 

 

Table 3-17:  Summary of schedule delay results 

Airport Actual  
CVAR Aug 07 

Predicted  
CVAR Aug 07 

Min Optimal Daily  
Schedule Delay Cost ($) 

Schedule Delay  
Cost for Aug 07 ($) 

BOS 0.43 0.68 99,353 2,980,590 

DEN 0.62 0.68 22,470 674,100 

EWR 0.41 0.66 84,431 2,532,930 

IAD 1.1 1.17 23,371 701,130 

IAH 0.56 0.72 25,973 779,190 

JFK 0.53 0.71 107,619 3,228,570 

LAS 0.36 0.48 120,948 3,628,440 

LAX 0.31 0.53 133,076 3,992,280 

LGA 0.3 0.5 205,450 6,163,500 

MCO 0.47 0.64 197,590 5,927,700 

ORD 0.39 0.81 273,928 8,217,840 

PHL 0.59 0.87 32,255 967,650 

SAN 0.48 0.67 381,627 11,448,810 

SFO 0.41 0.59 141,462 4,243,860 

SLC 0.86 0.91 143,971 4,319,130 

NAS-wide Total Cost for Aug 07 59,805,720 

NAS-wide Extrapolated Cost for 2007 717,668,640 
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3.5 Value of Demand Lost Due to Delays 
The previous analyses consider the economic impacts of flight delay of flight delay on airlines and 
passengers. An additional set of impacts arise as the result of lost demand. Flight delay, by degrading the 
quality and increasing the cost of air travel, causes some people to avoid air travel. These individuals 
would be better off if they could fly in a system free of delay than they are not flying in the existing 
system. Moreover, many of the trips that are “delayed off” the system are shifted to automobile, and it is 
well known what auto trips generate external social costs not borne by the traveler. 

3.5.1 Value of Demand to Travelers  

Our hypothesis is that flight delays, information about which has become increasingly available in the last 
several years, influence passenger demand.  As flight delays increase on a route, fewer passengers will be 
willing to fly on the route (i.e., the lower the demand).  Flight delays may also affect airline costs, driving 
operating costs higher and influencing prices.  Figure 3-10 illustrates the concept behind our analysis.  
The base demand, with current passenger delays, is D0 with a marginal revenue curve at MR0, a marginal 
cost curve at MC0 and a price, p0.  If delays are eliminated, then there will be a demand shift to the right 
(to D1) since delay, like the airfare, contributes to the total cost of travel. (This is true whether delay is 
measured against the scheduled arrival time or against some ideal unimpeded time. We will discuss the 
delay measures used in this analysis below.) As well, marginal revenue will shift up to MR1 and marginal 
cost down to MC1.  The new price would be p1 and the output will increase from q0 to q1.   

Figure 3-10 indicates the gains to society as a result of a reduction in delays.  Areas 1 and 3 show the 
positive change in consumer (passenger) welfare resulting from the shift in the demand curve from D0 to 
D1.  Area 1 represents the gains to current users of the air transportation system while Area 3 represents 
the deadweight (DWL) loss to consumers from schedule delays.  In a parallel fashion, Areas 2 and 4 
represent the gain in producer (airline) surplus and the reduction in producer (airline) deadweight loss, 
respectively, that would result from a decrease in operating costs due to a reduction in delays.  Here, the 
focus is on how schedule delays impact passengers, rather than airlines (i.e., Areas 1 and 3 in Figure 3-
10). 

In order to examine potential consumer welfare gains from the elimination of passenger delays, an 
econometric model is estimated using simultaneous (three-stage least squares) methodology. The model 
contains both fare and passenger demand equations, to model the simultaneous relationship between 
supply and demand at the route level. The level of travel demand on a route is modeled as a function of 
demographic variables (income and population at the route endpoints), air fare, and the average flight 
delay on the route. In addition, whether the route is a vacation route is considered as another demand 
influencing factor. As passengers perceive delay on a route based on their past experience, the one-quarter 
lagged delay rather than the contemporaneous delay is used. One may argue that, as shown in section 3.2, 
there could be differences between the average flight delay and average delay experienced by each 
passenger on the route. Nonetheless high correlations exist between the two variables. This discrepancy is 
therefore not be a big concern since it will be taken into account by the co-variations in an econometric 
model. On the fare side, we model fare as a function of the market demand (the number of passengers on 
the route), route distance, the density of competition, 11  as well as the level of delays. We further 
hypothesize that the presence of low-cost carriers on the route, or an adjacent route(s),12

                                                      
11 We use the Herfindahl-Hirschman Index (HHI) to measure the competition on a route. In each OD pair 
market (route), HHI is defined as the sum of market shares of all carriers operating. 

 whether a slot-
controlled airport at one or both endpoints, and whether the route is a vacation route would impact the 
fare charged by an airline on the route. Therefore, these variables are also included in the fare equation. 

12 Low-cost carriers are classified based on the method used by Hofer, et al (2008). 
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The panel dataset used to estimate our model covers 16 quarters from 2003 to 2006. The key information 
was collected from two data sources: Department of Transportation (DOT) DB1A and Air Travel 
Consumer Report (ATCR). The ACTR data were collected on a flight basis but aggregated to represent 
average delays for a carrier over a quarter in order to match the DB1A pricing information. 

Three measures of delay are calculated.  The first measure is the average number of minutes of delay on a 
route against scheduled block times.  However, this measure may underestimate delay since airlines pad 
their schedules in order to minimize the ATCR reported delays.  Therefore, we calculate two more 
idealized measures of delay.   These assess delay against measures of minimum feasible flight times; 
specifically, delays against the 10th percentile minimum (i.e., fastest) flight time and 20th percentile 
minimum flight time on a route in a quarter. 

Table 3-18 provides the results of our demand and airfare estimations.  From the estimations, it can be 
noted that delays on a route increase fares and reduce passenger demand.  Since the consumer surplus 
portion of the welfare gain to consumers has already been accounted for in the passenger delay cost 
analysis discussed in Section 3.2, for this section, we calculate the reduction in consumer DWL.  Based 
on the notation in Figure 3-10, the gain in deadweight loss attributed to the elimination of delays is 
calculated as ((p2-p1) * (q1 – q0)) / 2 for each of the three scenarios.    The price differences (p2-p1), 
generated traffic (q1-q0), and DWL gain are all shown in Table 3-19.  The value of the reduction in DWL 
varies from $840 million to $3.66 billion, depending on the model specification, and based on 681 million 
origin and destination passengers in 2007. The DWL component—the gain to passengers who would be 
attracted to the system as a result of eliminating delays—is not counted elsewhere, and is therefore added 
to the delay cost estimates presented in Section 3.2. 
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Figure 3-10: Welfare changes from elimination of delays 
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Table 3-18:  Estimation of fares and passengers – using three measures of delay13

 

 

Delays Against 
Scheduled Block Time 

Delays Against 20th 
Percentile Feasible 

Flight Time 

Delays Against 10th 
Percentile Feasible 

Flight Time 

FARE    

CONSTANT -20.30** -14.88*** -13.77*** 

LAG DELAY 0.05*** 0.04*** 0.04*** 

PASSENGERS 2.07** 1.54*** 1.44*** 

HHI 0.03 0.04 0.04 

DISTANCE 1.26*** 1.01*** 0.96*** 

LCC14 -1.12*  -0.90*** -0.85*** 

ADJ_ROUTE_LCC    -0.13*** -0.10*** -0.09*** 

SLOT_CONTROL 0.18 0.20 0.19 

VACATION_ROUTE -0.32* -0.21** -0.19** 

Time Dummies Included 

Passengers    

CONSTANT -6.28*** -6.95*** -7.14*** 

LAG DELAY -0.01*** -0.01*** -0.01*** 

FARE -1.36*** -1.33*** -1.33*** 

POPULATION 0.01*** 0.01*** 0.01*** 

INCOME 1.73*** 1.78*** 1.80*** 

VACATION_ROUTE 0.24*** 0.24*** 0.24*** 

Time Dummies Included 

Note: *** p<0.01, ** p<0.05, * p<0.1 

 

 

                                                      
13 All variables are logged except LAGDELAY (due to zero values).  The delay variable was lagged one 
quarter since it was thought that prior information on delays would affect future demand.  Other variables 
included in the estimations measured the density of the route (PASSENGERS), the market concentration 
(HHI), route distance (DISTANCE), the presence of a low-cost carrier on a route (LCC), the presence of a 
low-cost carrier on an adjacent route (ADJ ROUTE LCC), a slot-controlled airport at one or both route 
endpoints (SLOT CONTROL), whether the route was a vacation route (VACATION ROUTE), and the 
population (POPULATION) and income levels (INCOME) at the route endpoints.   
14 LCC is the presence of low-cost carrier dummy, equal to one if at least one low-cost carrier operates on the 
market, and zero otherwise. 
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Table 3-19: Estimation of welfare gains per passenger from  
eliminating delays from the three model specifications 

 Scheduled 
Block Time  

20th Percentile 

Feasible Time 

10th Percentile 

Feasible Time 

Price Difference ($) 19.91 31.54 34.19 

Generated Traffic (millions of passengers) 84.4 189.6 214.1 

DWL Gain ($ Billions) 0.84 2.99 3.66 

DWL = Dead Weight Loss 

 

3.5.2 Traffic Diversion Impacts 

3.5.2.1 TSAM Model 

To further quantify other impacts of passenger loss to other modes of transportation, such as accident 
fatalities and automobile external costs, we employ the Transportation Systems Analysis Model (TSAM). 
TSAM has been described in the literature (Trani et al., 2004; Baik et al, 2008) and only the basics of the 
model are presented here for completeness. The TSAM model is nationwide transportation analysis model 
developed at Virginia Tech to predict nationwide intercity and commuter travel demand. The 
Transportation Systems Analysis Model (TSAM) is an effort to understand the complex inter-
relationships between ground and air transportation demand in the country. TSAM has potential use in 
strategic transportation planning applications such as studying the air transportation demand impacts of 
fielding a New Generation Air Transportation System (NextGen); studying future mobility trends in the 
nation with many secondary airports offering more point-to-point services; or understanding the impacts 
of new aerospace technologies – such as very light jets – operating into the National Air Transportation 
System (NAS). 

TSAM is designed to forecast the number of annual round trips by automobile and commercial airline 
between all the counties in the United States. The demand estimation process differentiates between 
business and non-business trip purposes and five household income group levels. The core of TSAM is 
based on the classic four-step model employed in transportation systems planning. The trip generation 
module calculates the number of produced and attracted round trips at the county level. The trip 
distribution module distributes the produced trips from each county to all other counties. The mode choice 
module assigns a mode to each roundtrip. Finally, the network assignment module loads the commercial 
airline demand onto the National Airspace System (NAS). 

A limitation of TSAM for this analysis is that it considers demand changes arising from mode shifts, 
while keeping aggregated travel volumes constant. We have thus relied on the econometric model 
presented in Section 3.5.1 to assess the value of lost air travel demand that results from delays. However, 
TSAM has the unique capability to predict how changes in air service effect traffic on other modes, in 
particular automobile traffic. Auto traffic is recognized to have high social costs, and we therefore employ 
TSAM to quantify the additional auto traffic that results from flights delays, and its associated external 
social costs. 

For this analysis we employ version 5.8 of TSAM calibrated in September 21, 2009. The trip generation 
forecast comes from a combination of data from the American Travel Survey (ATS) and Woods and 
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Poole socio-economic projections (version 2009). The model employs a disaggregate Box-Cox Logit 
model (Mandel et al., 1997) to estimate the utility of travel between any origin and destination in the U.S. 
The model differentiates travel choices across five income levels (< $25,000 and up to > $125,000 
household incomes per year) and two trip purposes (business and non-business). Mode choices in TSAM 
depend on travel cost (TC) and travel time (TT). The specification of the Box-Cox model requires 
estimation of the utility of travel by air UAir and automobile UAuto (or other modes if available). These 
utilities are then converted to probabilities of travel calibrated using actual traveler data from ATS. The 
coefficients of the model calibration in TSAM 5.8 are shown in Table 3-20. 

 

 

 

 

 

 

For this analysis, airport demand projections made with the model are relative to the baseline year (i.e., 
2007). These projections represent the growth expected in commercial airline traffic at all commercial 
airports with commercial services in the continental U.S. (Hawaii, Alaska and other U.S. territories are 
excluded from this analysis). We assume OD pairs whose flight frequency was less than 3 flights per 
week are not reliable and neglected them in our calculation. In the year 2007, there were 378 airports with 
reliable commercial service in the U.S. (based on weekly schedule of more than 3 flights per week).  
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Table 3-20: TSAM model calibrated coefficients 

Coefficient Value 

 
 
Travel Time 

<$25K -0.6400 
$25K - $50K -0.6980 

$50K - $75K -0.9264 

$75K - $125K -1.0819 

>$125K -2.0143 

 
 
Travel Cost 

<$25K -1.2501 

$25K - $50K -1.8478 

$50K - $75K -0.9520 

$75K - $125K -0.7610 

>$125K -0.0074 

 
Lambda 
Travel Time 
Auto 

<$25K -0.0669 

$25K - $50K -0.1561 

$50K - $75K -0.0098 

$75K - $125K 0.0467 

>$125K 0.1694 

 
Lambda 
Travel Cost 
Auto 

<$25K 0.1748 

$25K - $50K 0.0834 

$50K - $75K 0.1660 

$75K - $125K 0.2057 

>$125K 0.4676 

 
Lambda 
Travel Time 
Commercial Air 

<$25K 0.6301 

$25K - $50K 0.5030 

$50K - $75K 0.3081 

$75K - $125K 0.3352 

>$125K 0.2485 

 
Lambda 
Travel Cost 
Commercial Air 

<$25K -0.0156 

$25K - $50K -0.0621 

$50K - $75K 0.0594 

$75K - $125K 0.0936 

>$125K 0.9964 
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3.5.2.2 Mode Diversion Impacts from Flight Delay 

A comparison between block and actual flight times is a good indicator of the efficiency (or inefficiency) 
of the air transportation system. The analysis presented in this section provides an estimate of the number 
of passengers lost due to airline schedule padding practices. We calculate flight padding as the difference 
between the published schedule times from the Official Airline Guide and the observed and corrected 
travel times between airports including unimpeded taxi-out and taxi-in times. Observed flight times 
(corrected for wind allowances) are derived from the FAA Enhanced Traffic Management System and the 
Aviation Systems Performance Metrics (ASPM). Variations of block times are encountered in practice 
because airlines have to account for exogenous factors in route planning such as variable aircraft 
performance, cost indices, and wind conditions. Figure 3-11 illustrates an example of flight times 
recorded in ETMS for flights of US Airways between LGA and BOS using Airbus A319/320 aircraft. A 
single airline and a single aircraft type are used in this example to isolate the effects of dissimilar aircraft 
operating a single origin-destination airport-pair. The graph shows the cumulative density function of 
flight times as reported in ETMS. The mean flight time using the Airbus aircraft is calculated to be 0.51 
hours.  For this route we can estimate that a maximum difference of 4 minutes exists for flights between 
LGA-BOS and BOS-LGA. That is, a four-minute allowance for winds is expected in the route. Similarly, 
unimpeded taxi-out and taxi-in travel times at LGA are 12.5 and 5.6 minutes, respectively. For Boston, 
unimpeded taxi-out and taxi-in travel times are 13.5 and 5.8 minutes, respectively. Considering these 
factors, the average block time (assuming the slowest flight condition) between LGA-BOS is then 0.86 
hours or 51 minutes. According to the Official Airline Guide, airlines schedule between 61 and 72 
minutes of block time for these flights (depending upon the departure time). This translates into build-in 
delay allowances of 10 to 21 minutes or equivalent to a 20 - 41% increase in travel time over unimpeded 
travel time.  The increase in flight times results in an increase to the door-to-door time, which affects 
mode choice decisions made by passengers.  

 

 
Figure 3-11: Cumulative density function of flight times between  

LGA and BOS by Airbus A319/320 aircraft 
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Using a combination of ASPM, ETMS and T100 data we estimate the minimum feasible block times 
between Origin and Destination airports for the top 45 airports in the country. These minimum block 
times are compared with published block times in the Official Airline Guide (OAG) to derive scheduled 
padding times for individual origin-destination airport pairs. Figure 3-12 shows the schedule buffer for 
1294 origin-destination pairs as a function of great circle distance between airport pairs. It is important to 
note that the derivation of feasible block times employs actual routes flown in the NAS and not great 
circle distances. Block times for smaller airports were computed using the 50th percentile value of all 
available records for each airport which increased the number of origin-destination pairs to 3433. 

 

 
Figure 3-12: Estimated padding times for 1294 origin-destination  

pairs in the national airspace system 

 

Table 3-21 provides estimates in the changes in various travel metrics that are predicted to result from 
eliminating schedule buffer in the system. This table illustrates that as a result of removing schedule 
buffer, we could expect an increase in 3.3 million annual round person trips nationwide using commercial 
air transportation. Since the analysis considers just two modes of transportation nationwide, all travel is 
shifted from automobile. This translates into roughly 8.6 million enplanements in the system. According 
to these calculations, the total door-to-door travel-time savings to commercial air passengers would be on 
the order of 12.2 million hours nationwide. This number accounts for reductions in the average travel time 
per air trip and the additional 3.3 million round person trips added to the system as a result of reduced 
door-to-door travel times. With a more efficient air transportation system, the average trip distance by air 
is reduced by 9 statute miles on average. This is the result of the added attractiveness of commercial air 
travel for shorter distances.  

While many of these changes are significant, they cannot all be counted toward the total cost of flight 
delay, since this would result in double counting. Two results that are not accounted for elsewhere are 
accident fatalities and external costs to other motorists. Table 3-22 summarizes these impacts. Eliminating 
schedule padding would result in a reduction of 15 automobile fatalities and $199.5 million in automobile 
externalities. The latter is based on an estimated externality cost per auto vehicle mile of 10.45 cents 
(Parry et al., 2007). 
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Table 3-21: Changes in 2007 nationwide intercity passenger demand  
(minimum feasible block times vs baseline system) 

Metric Automobile Commercial Air 

Change in County-to-County Annual Round Trips (millions) -3.3 +3.3 

Change in Total Door-to-Door Travel Time 

 (millions of hours) 
-115.5 -12.2 

Average Trip Length (statute miles) -1 -9 

Average Travel Cost ($) -1 -1 

Total Travel Cost (Billion $) -0.7 +1.0 

 

Table 3-22: Changes in 2007 nationwide safety impacts  
(minimum feasible block times – baseline system) 

Metric 

Net Change 
(Minimum Feasible 
Block Time System 

– Baseline) 

Total Intercity Road Fatalities -15 

Auto Fatalities -25 

Commercial Airline Access Fatalities +5 

Commercial Airline Egress Fatalities +5 

Total Intercity Vehicle Miles Traveled (billions) -1.0 

Automobile Vehicles Miles Traveled (billions) -1.8 

Commercial Airline Access Vehicle Miles Traveled (billions) 0.4 

Commercial Airline Egress Vehicle Miles Traveled (billions) 0.5 

Automobile Externality Cost  ($ millions) -199.5 

 

3.6 Estimating the Indirect Impact on the US Economy 
Delay affects the overall economy in a variety of different ways. Because of dual role that air 
transportation plays as a mover of people and a mover of goods, the impacts of flight delays are not 
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confined to airlines and their passengers, but will affect other segments of the economy.  Increases in 
passenger fares, needed to recover costs to airlines from delayed flights, will not just affect the demand 
for leisure travel but also lead to increases in the cost of production for industries that rely on air 
transportation to conduct business.  When schedule padding and flight delays add time to a business trip, 
employers experience a loss in productivity.   

We trace and quantify these effects using a computable general equilibrium (CGE) model.  Specifically, 
for this purpose we use a version of the USAGE model that has been modified to include a more detailed 
representation of the air transportation sector and an explicit description of the various interconnections 
between the level and composition of economic activity, and the level of delay in the system.   

3.6.1 USAGE Model Description 
The USAGE model is based on the MONASH model (Dixon and Rimmer, 2002) of Australia that has 
been developed for the U.S. International Trade Commission (USITC).  The model database contains 
information on 539 commodities produced by 535 industries.  This large degree of commodity and 
industry disaggregation will reduce the possibility that important economic linkages will be obscured in 
the model simulations.  This will be important in understanding which industries will be most affected by 
the cost of flight delays.  Unlike other CGE models, the USAGE model links the demand for air 
transportation to the demand for domestic and foreign leisure travel, the demand for air transportation by 
industries, and to the shipment of commodities to purchasers (e.g., domestic margins).  However, the 
model’s database does not distinguish between passenger and freight services directly.  As described 
below, the air transportation sector in the USAGE data is disaggregated into two industries that provide 
either domestic or international flights.   

The USAGE model is a recursive-dynamic model that is capable of identifying the adjustment time paths 
for the endogenous variables in the model (e.g., prices, quantities, etc.).  The dynamic feature of the 
model will allow forecasted changes in economy activity, such as Gross Domestic Product (GDP), that 
will affect the demand for air transportation and therefore the level of flight delays to be incorporated in 
the analysis.  Staff at the USITC have developed a baseline forecast (e.g., changes GDP, employment, 
consumer preferences, rates of technical change, etc.) that covers the base period of 2005 through 2013 
(see U.S. International Trade Commission, 2009).  This baseline includes projections on GDP, 
employment, and other macro variables from sources such as the Congressional Budget Office (CBO).  
But it also includes projections on changes in consumer preferences and rates of technical change based 
on historical simulations that allow the USAGE model to be consistent with available statistical 
information.  Finally the USITC baseline also incorporates forecasted changes in industry output from 
various sources.  One drawback with the current USITC baseline is that it treats the period from 2005 to 
2013 as a “single” time period.   

3.6.2 Disaggregation of Air Transportation in USAGE Database 

Because delay will mainly affect passenger rather than freight services, domestic air transportation in the 
USAGE database is disaggregated into two industries and two commodities:  domestic air passenger 
services and all other domestic air transportation services.  In the base year (2005), the value of output of 
air transportation services equaled $122.8 billion.  Of this total, $83.9 billion is accounted for by 
intermediate use by firms and leisure travel, $38.7 billion by air freight, and $0.2 billion for inventory 
changes.  The air transportation industry provided the majority of these transportation services – $115.0 
billion – with the remainder provided by the freight forwarding, wholesale and retail trade, and state and 
local government enterprises.  We assume that only the air transportation industry provides passenger 
services that are susceptible to delay.   

The output of the air transportation industry is allocated to either air passenger services or other air 
transportation based on who purchases the services.  All purchases for intermediate use, except for 
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intermediate purchases by the Postal Service, and for leisure travel are assumed to be air passenger 
services.  The use of air transportation by the Postal Service and air transportation is assumed to be freight 
services and are allocated to other air transportation.  Based on these assumptions, approximately 69.5 
percent of value of air transportation output, $80.2 billion, is allocated to air passenger services.  The 
intermediate inputs used by air transportation are allocated to air passenger and other air transportation 
proportionally, based on their above output shares.  The exception is that all own-use of air transportation 
is allocated to air passenger services. 

3.6.3 Incorporating Delay into the USAGE Model 

A logistic function is used to determine the level of delay associated with a given level of air passenger 
output.  The advantages of using a logistic function is that it is a smooth and twice differentiable function 
and can represent both linear and non-linear responses over a range of air passenger output level.  We 
estimate the relationship between the level of flight delay and the output of air passenger services 
econometrically using monthly data on the percentage of flights delayed and the number of flight 
operations from the Bureau of Transportation Statistics (2009).  The estimated elasticity of flight delay 
with respect to flight operations, evaluated at the sample means, is 1.5.  The parameters of the logistic 
flight delay function are chosen such that a 1% increase in air passenger output results in a 1.5% increase 
in flight delay, with the initial level of flight delay equaling the annual average of 20% in the 2005 base 
year (Bureau of Transportation Statistics, 2009).  Because the delay elasticity is subject to estimation 
error, alternative elasticity values of 1.0 and 2.0, which correspond to a 95% confidence interval for the 
estimated coefficients, are utilized in a sensitivity analysis. 

A logistic function is also used to represent the relationship between the level of flight delay and airline 
costs.  The trans-log cost function estimated in section 3.1 is not used directly in this analysis for two 
reasons. First, the concavity of the trans-log cost function cannot be guaranteed for all factor prices and 
second, it is short-run function that assumes a fixed level of capital.  Because USAGE model will be 
solved for an 8 year time period, the level of capital used in the air transportation sector will not likely 
remained fixed.  In addition, even though the parameter estimates for the short-run cost function in 4.1 
suggests differential effects of delay on input usage, because the level of capital is held fixed, those 
differentials cannot be translated into a long-run cost function.  The parameters of the function used in the 
model are chosen such that a 1% increase in flight delay will increase airline costs by 0.18%.  Again, 
because the estimated coefficients in the trans-log cost function are subject to random error, alternative 
elasticity values of 0.06% and 0.3%, which correspond to a 95% confidence interval for the estimated 
coefficients, are utilized in a sensitivity analysis. 

Finally, a logistic function is also used to represent the relationship between flight delay and labor 
productivity for industries that use air passenger services (e.g., business travel).  Because the impact of 
delay on labor productivity will depend on how intensively a sector used air passenger services, the 
logistic function is weighted by each industry’s cost share of air passenger services relative to the average 
cost share across all industries in the base year. Thus, the more intensively an industry uses air passenger 
services, and thus business travel, the greater the effect of a change in delay will be on that industry.  A 
change in labor productivity from a change in flight delay is treated as a biased labor technical change and 
is included in the labor demand functions and the zero profit conditions for all industries that use air 
passenger services as an intermediate input. 

The relationship between a change in flight delay and a change in labor productivity is based on the 
estimated hours of delay compared to the total number of hours worked in the U.S. economy.  The total 
hours of passenger delay due to airline schedule buffers, flight delays, capacity-induced delay, and 
voluntary schedule adjustments is estimated to equal 458.1 million in 2007.  The total number of hours 
worked in the U.S. economy is computed as the number of nonfarm employees, including those in the 
public sector, multiplied by the average weekly hours of private sector production workers (obtained from 
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the Bureau of Labor Statistics).  This assumes that the average weekly hours worked for all nonfarm 
employees is the same as for production workers.  Using these assumptions, there were approximately 
242.0 billion hours worked by all nonfarm employees in 2007. 

Because business travelers comprise only a fraction of total air passengers and not all hours lost to delay 
are unproductive, several assumptions are necessary to determine the number of hours of productive work 
lost due to flight delay.  First, the fraction of air travel dollars spent for business purposes is assumed to 
equal to the fraction of hours lost to delay that can be attributed to business travel.  In 2007, the Bureau of 
Economic Analysis reported that business travel accounted for 48% of all dollars spent on domestic 
flights by U.S. residents.  However, while business travelers like face the same probability of having their 
flight delayed as do leisure travelers, they generally pay higher fares.  This would imply that the delay 
experienced by business travelers may be less than proportional to business travel cost share.  In 
determining the productive hours lost to delay, three alternative values of fraction of total delay attributed 
to business travel, 0.24, 0.36, and 0.48, are considered. 

With an array of “coping strategies” available to business travelers, not all hours lost to delay are 
unproductive.  Because the effect of these coping strategies is not fully known, three alternative 
assumptions are used:  all hours lost to delay are unproductive, one-half of the hours lost to delay are 
unproductive, and one-quarter of the hours lost to delay are unproductive.  Finally, an adjustment must be 
made concerning the productivity of a business traveler to the average productivity of other employees.  If 
the employees who make business trip are more likely to hold management or sales positions, then their 
labor productivity may be higher than the average worker (or at least are compensated at a higher wage 
than the average worker).  Therefore, two alternative productivity values are use:  the business traveler 
has the same average productivity as all employees and the business traveler has twice the labor 
productivity as the average employee. 

Based on these assumptions, the total hours of delay attributable to business travel and are unproductive, 
as a percentage of the total hours of U.S. employment ranges from 0.011% to 0.182%, with an average of 
0.06% in 2007.  Since the level of flight delay in 2007 was 20% higher than in 2005 (Bureau of 
Transportation Statistics), if the change in labor productivity is proportional to a change in flight delay, 
the average increase in unproductive hours of business travel due to delay would equal 0.012%.  Thus, the 
parameters in the logistic function for labor productivity are chosen such that a 20% increase in flight 
delays will result in a 0.012% loss in average labor productivity.  A range of 0.005% to 0.02% is utilized 
in the sensitivity analysis. 

3.6.4 USAGE Model Simulation 
Two simulations are used to assess the macroeconomic costs of flight delays is comprised of two parts.  
The first is the baseline forecast simulation, where information on economic growth and other relevant 
macroeconomic variables in the USITC baseline is introduced into the modified USAGE model.  This 
simulation will determine how forecasted changes in income, consumer tastes, and technical change will 
affect the demand for air transportation and the amount of flight delays if no policies or actions are taken 
to reduce the amount of flight delays.   

The second is the policy simulation, where it is assumed that some action or policy is implemented that 
reduces the level of delays for a given level of industry output.  In this simulation, an exogenous variable 
is shocked in order to achieve a “target level” of reduction in the 2005 level of flight delay.  By 
comparing the model results for the forecast and policy simulations, one is able to estimate the impacts of 
a reduction in flight delays on the U.S. economy.    

3.6.5 Simulation Results 

The first column of Table 3-23 presents the key results for the baseline forecast simulation that uses the 
base (mean) values of the delay parameters.  Real GDP, in 2005 dollars, is forecast to grow by 25.97%, or 



 

62 

 

an average of 2.93% per year, between 2005 and 2013.  Because the labor supply and employment hours 
are forecasted to grow by approximately 7% between 2005 and 2013, the real wages are forecast to grow 
by 21.2%, or 2.43% per year.  Aggregate real investment is forecast to grow 28.3% between 2005 and 
2013, or 3.16% per year (not shown in Table 3-23).  Because of the faster growth in investment and 
therefore capital stocks, the increase in the real capital rental rate, 8.8% between 2005 and 2013, is much 
smaller than the increase in the real wage rate. 

The resulting increase in economic activity and household income (through increased factor payments) 
results in a 21.3% increase in the output of (domestic) air passenger services and a 40.8% increase in the 
output of international air passenger services supplied by domestic air carriers.15

The increase in output of air passenger services results in a 32.1% (21.3*1.5 elasticity of delay) increase 
in passenger delay, from 20% of all flights delayed in 2005 to 26.4% of all flights delayed in 2013.  This 
increase in delay also results in a 5.7% increase in airline cost (32.1*0.18 airline cost elasticity).  Overall, 
due to increase in demand for air passenger services, increases in input prices (e.g., wage rate), and 
increased costs from delay, airline costs and fares increase by 30.3% between 2005 and 2013.

  The increase in the 
output of air passenger service is larger than the 14.6% increase in domestic revenue passenger miles 
forecasted by the FAA (2009) for the 2005 to 2013 period.  Some of this difference may be explained by 
the lower projection of growth in U.S. real GDP (22.3% over the 2005-2013 period) used by the FAA in 
their forecasts.  However, our projected increase in the output of international air passenger services is 
similar to the FAA forecast of a 37.6% increase in international revenue passenger miles provide by 
domestic carriers. Apparently the demand function for air transportation contained in our model differs 
somewhat from those implied by the FAA’s forecast. 

16

A reduction in flight delay has two economic effects.  First, a reduction in delay will lead to a reduction in 
airline costs. Because of the model’s assumption of perfect competition, this reduction will also lead to a 
reduction in air fares.  The reduction in air fares will lead to an increase in the demand for leisure travel 
by domestic residents to domestic destinations, represented as the Holiday industry in the USAGE model, 
and to an increase in leisure travel by foreign residents to domestic destinations, represented by the 
Export Tourism industry in the USAGE model.  A decrease in domestic air fares will reduce the price of a 
domestic vacation for both domestic and foreign residents.  An increase in leisure travel will also increase 
the demand for the output of tourism related industries, such as hotels, restaurants, entertainment, and 
other forms of transportation, such as car rentals.  The decrease in air fares will also reduce the cost of 
business travel, leading to a reduction in firm costs and prices.   

 The 
increase in the level of flight delay also leads to a 0.02% loss in average labor productivity.  Because the 
increase in flight delay in the forecast simulation is approximately 1.6 times larger than 20% change 
which was used to calibrate the logistic function, the average productivity loss is approximately 1.6 times 
larger than the average change in labor productivity of 0.012%. 

The second main economic effect is an increase in labor productivity from a reduction in the number of 
unproductive hours lost to delay.  This increase in productivity will itself have three economic effects.  
First, it will reduce the demand for labor at constant prices because firms can produce the same level of 
output with less labor.  Second, because labor is more productive, it becomes relatively less expensive to 
employ than capital (e.g., there is a reduction in the “effective price” of labor).  This will encourage firms 
to substitute labor for capital.  Third, the reduction in the effective price of labor will lead to lower firm 
costs and price.  This reduction in price will lead to an increase in demand for the firm’s product, thereby 
                                                      
15 Data on international flights provided by domestic air carriers are contained in the Air industry in the 
USAGE data.  Because this sector also provides domestic margin services, only the change in Air services 
provided as an intermediate input is used to compute the change in international air passenger services.  
16 Since all industries are assumed to be perfectly competitive in the USAGE model, zero economic profits are 
assumed to hold in an equilibrium implying that the percentage change in price is equal to the percentage 
change in cost. 
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encouraging firm expansion and increasing the demand for labor.  As shown in Table 3-23, the last two 
effects dominate the first, resulting in an increase in the demand for labor and an increase in real wages in 
the policy simulation compared to the forecast simulation. 

One issue left is to what extent can (or should) flight delays be reduced. As stated earlier, even if ample 
aviation infrastructure is provided, some flight delays will persist in that flights can be delayed due to 
reasons other than congestion. Our hope is to reduce delay be a very large percentage with more advanced 
aviation technologies (such as NextGen), adequate infrastructure investment, and appropriate government 
policies. Because the amount of reduction in flight delay that is achievable is uncertain, we evaluate eight 
different delay reduction scenarios.  To focus the discussion, scenario that reduces the 2005 level of flight 
delay by approximately 20% will be presented first, followed by a comparison across the different delay 
reduction scenarios.  In this first scenario, the level of delay decreases by 21.0% from the 2005 level to 
15.8% of all flights, which corresponds to a 40.2% reduction in flight delay compared with the forecast 
simulation.17

The reduction in air fares for domestic flights leads to 1.3% increase in domestic leisure travel by 
domestic residents for a 21% reduction in delay compared with the forecast simulation.  Each 10 
percentage point reduction in delay leads to a 0.25 percentage point increase in domestic leisure travel by 
domestic residents.  The reduction in domestic air fares also leads to 0.7% increase in domestic leisure 
travel by foreign residents.  Each additional 10 percentage point reduction of flight delays leads to a 0.15 
percentage point increase in domestic leisure travel by foreign residents.   

  The reduction in delay leads to a 3.9% reduction in the base level of airline costs, or a 9.2% 
reduction compared to the forecast simulation.  The decrease in cost from a reduction in delay accounts 
for approximately 90% of the reduction in air fares in the policy simulation compared to the forecast 
simulation.  An additional 10 percentage point increase in reduction in delay the leads to a 1.8 percentage 
point larger reduction in airline costs and a 2.0 percentage point larger reduction in air fares compared 
with the forecast simulation.  For example, the reduction in airline costs from a 31% reduction in flight 
delay is 5.7%, or a 1.8 percentage point increase from the 3.9% reduction in airline costs from a 21% 
reduction in delay.   

The reduction in domestic air fares and resulting increase in domestic leisure travel cause the output of 
domestic air passenger services to increase by 2.1% for a 21% reduction in flight delay compared with the 
forecast simulation.  The output of air passenger services increases by an additional 0.5 percentage points 
for each additional 10 percent point reduction in domestic flight delay.  If all delay were eliminated, the 
output of air passenger services would increase by 6.1% compared with the forecast simulation.   

A reduction in domestic flight delay will also affect the output of international air passenger services 
provided by U.S. air carriers.  The increase in domestic leisure travel by foreign residents increases the 
demand for international flights to the United States.  However, because the reduction in flight delay is 
assumed to only affect domestic flights, domestic air fares decrease relative to air fare for international 
flight for U.S. residents.  This makes international leisure travel relatively more expensive than domestic 
leisure travel, causing domestic residents to reduce their travel to international destinations.  Overall, the 
output of international air passenger services provided by U.S. air carriers increases by 0.6%.  Each 
additional 10 percentage point reduction in delay increases the output of international air passenger 
services provided by U.S. carriers by an additional 0.1 percent points.  If all domestic delay were 
eliminated, the output of international air passenger services provided by U.S. carriers would increase by 
1.4% compared to the forecast simulation. 

The overall macroeconomic effects of a reduction in domestic flight delay are measured by the dollar 
increase in real GDP and net welfare gain.  For a 21% reduction in delay, the decrease in domestic airline 
costs and increase in labor productivity yields a 0.08% larger increase in the growth of real GDP between 
                                                      
17 The percentage change in delay between the policy and forecast simulation is computed as [(1+(% change in 
delay in policy simulation/100))/(1+(% change in delay in forecast simulation/100))-1]*100. 
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2005 and 2013 compared with the forecast simulation.  Based on a $12,073.4 billion value of U.S. GDP 
in 2005, this implies an $11.59 billion additional increase in real GDP between 2005 to 2013 period, or an 
annual increase of $1.449 billion.  Each additional 10 percent point reduction in delay increases the total 
gain in real GDP by approximately $3.053 billion, or about $0.375 billion per year.  If domestic flight 
delay were totally eliminated, there would be a $35.8 billion increase in real GDP over the entire period, 
or approximately $4.475 billion per year. 

A limitation of the USAGE model is that it does not allow for substitution between transportation modes 
when relative prices change.  For example, in the model a decrease in domestic air fares will lead to a 
reduction in the price (cost) of domestic leisure travel.  The model assumes that the resulting increase in 
the demand for domestic leisure travel will increase the demand for all transportation modes 
proportionally.     

A related limitation of the USAGE model is that it does not allow the mix of inputs purchased by an 
industry to vary with changes in relative prices. Each industry in the model relies upon a fixed “recipe” of 
inputs from other industries that does not change as prices change. Thus, as reductions in delay lower the 
price of air transportation, the model does not allow industries that rely on air transportation to produce 
output in a more air transportation manner. To the extent that such substitution possibilities exist, the 
USAGE model may underestimate the net economic effect of eliminating delay. 

A May 2008 report by the Joint Economic Committee, United States Congress estimated that the total 
costs of air traffic delay equaled $40.7 billion in 2007.  The majority of this estimate reflected increased 
airline operating costs and other costs to the economy.  This estimate is much larger than our estimated 
GDP impact because it treats the entire increase in cost as an economic loss.  However, increases in 
spending on inputs such as fuel or labor mainly represent a transfer from the buyers of air passenger 
services and not an economic loss. Reductions in airline costs and airline fares lower the amounts paid by 
users of air transportation services, but also reduce the number of employees, aircraft and other inputs the 
airline industry need to produce a given level of output. Reductions in airline costs thus have offsetting 
positive and negative economic effects. As discussed above, the real economic loss to the economy from 
air traffic delay arises from the increased use of labor and capital by airlines and industries that supply 
inputs to the airlines, leaving less labor and capital available to produce other goods and services in the 
economy. There is also a loss in labor productivity by business travelers.  Both effects represent a 
deadweight net loss to the economy, which in general are smaller than gross transfers between agents that 
result from the elimination of delay.     

3.6.6 Sensitivity analysis 
Because of the uncertainty about the values of the parameters in the logistic flight delay functions, a 
sensitivity analysis is performed for the elasticity of delay with respect to air passenger output, the airline 
cost elasticity, and the average percentage change in labor productivity using symmetric order three 
Gaussian quadratures.  This procedure assumes that each uncertain parameter has an independent uniform 
distribution with known (or estimated) endpoints.  A sample of parameters is drawn from these 
distributions and the model is resolved using each set of parameter values.   

The dollar increase in real GDP achieved from the alternative reductions in flight delay reported in Table 
3-23 is shown as the solid line in Figure 3-13.  Resolving the model using the alternative sets of 
parameters identified by the Gaussian quadratures, one can compute the standard deviation for the 
increase in real GDP.  Across the alternative reductions in flight delay, the standard deviation for the 
dollar increase in real GDP is approximately equal to 0.325 times the mean value reported in Table 3-23.  
Its value ranges from $3.767 billion for a 20 % reduction in flight delay to $10.645 billion for a 90% 
reduction in flight delay.  The dashed red line in Figure 3-13 represents a one standard deviation increase 
or decrease from the mean increase in real GDP.   
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Table 3-23: USAGE model results using base values of the delay parameters 

  Policy Simulation – Target Reduction in Flight Delay 

Variable Forecast 20% 30% 40% 50% 60% 70% 80% 90% 

 Percentage Change 

Real GDP 25.97 26.07 26.09 26.12 26.14 26.17 26.19 26.22 26.24 

Real wages 21.21 21.37 21.40 21.43 21.46 21.49 21.52 21.55 21.58 

Flights delayed 32.1 -21.0 -31.0 -41.1 -51.4 -61.7 -72.3 -82.9 -92.2 

Domestic passenger outputa 21.3 23.9 24.4 25.0 25.6 26.2 26.9 27.5 28.1 

International passenger outputa 40.8 41.6 41.8 41.9 42.1 42.3 42.5 42.6 42.8 

Average labor productivity -0.02 0.013 0.019 0.025 0.031 0.038 0.044 0.050  

Domestic air fares: from delay b 5.7 -3.9 -5.7 -7.6 -9.6 -11.6 -13.6 -15.6 -17.4 

Domestic air fares: total b 30.4 17.2 14.6 12.0 9.4 6.8 4.1 1.3 -1.0 

Domestic leisure travel          

Domestic residents 21.4 23.0 23.3 23.6 23.9 24.2 24.6 24.9 25.2 

Foreign residents 77.7 79.0 79.2 79.5 79.7 80.0 80.3 80.6 80.9 

Foreign leisure travel 2.7 1.8 1.6 1.4 1.2 1.0 0.7 0.5 0.4 

  $ millions (2005) 

Increase in real GDP   11,590.4 14,234.5 17,578.8 20,705.8 23,639.7 26,766.7 29,760.9 32,755.1 

Net Welfare Gain  15,446.0 18,829.8 22,919.4 26,724.7 30,432.7 34,037.0 37,989.2 41,615.2 

Equivalent variation  13,081.8 15,339.7 18,292.2 20,937.9 23,486.3 25,897.2 28,656.0 31,235.0 

Opportunity Cost for Leisure Travel  2,364.2 3,490.1 4,627.2 5,786.8 6,946.4 8,139.8 9,333.2 10,380.2 
a Refers to output by U.S. carriers for domestic and international flights 
b Because all industries are assumed to be perfectly competitive in the USAGE model, the percentage change in the output price must equal the  
percentage change in the cost of production in all industries.  Thus the percentage change in domestic air fares is equal to the change in airline cost 
for domestic flights.
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Figure 3-13: Change in real GDP from reduction in flight delay:   

mean value and one standard deviation  
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4 Individual Perspectives on Passenger Delay  
Over the course of this project we have examined the issue of how delay affects the air 
transportation system from a variety of different perspectives. We have studied the effects that 
delay has on airline costs. We have examined the mechanisms through which delayed aircraft 
arrivals and departures translate into longer passenger trips and delayed passenger arrivals. We 
have computed the amount of passenger time consumed by delay, and we have studied the effects 
that delay and unpredictability have had on passenger behavior.  

This research has been based upon careful analysis of large datasets describing the actual 
behavior of large groups of passengers and large segments of the air transportation system. We 
have thus taken a quantitative and macro-level approach, searching for statistically reliable 
evidence of large-scale patterns of behavior. This approach has many significant advantages, 
including objectivity, statistical reliability, and the ability to extrapolate study findings to the 
level of the system as a whole. At the same time, however, this macro approach abstracts from the 
rich detail of individual behavior, and in the process loses some of the human perspective on 
passenger delays. 

In order to obtain a deeper appreciation of how passengers – in particular, business travelers – 
have been affected by passenger delay (and possibly other factors such as security changes, 
“hassle factor”, coping with airport services, etc.), we also conducted qualitative research into the 
effects of delay. Our goal in carrying out this research was first to see whether a comparison of 
the macro and micro perspectives on delay would produce confirmation or contradiction. In other 
words, do the reports of individual travelers describe the same patterns of behavior we see at the 
system level? We also sought to deepen our understanding of how passengers are affected by 
delay, and how their responses to the problem of delay might alter in the future. 

This qualitative research was based upon detailed interviews with a large number of individuals 
heavily involved in the world of business air travel. We also conducted an extensive review of 
discussions in the trade and popular press of issues relating to delays and business travel. This 
literature-based approach has permitted us to engage in a bit of “time travel,” and sample 
opinions and perspectives expressed a year or two in the past when congestion was more severe, 
delays were more common, and strategies for coping with delay were a much more common topic 
of discussion. We summarize the insights we have gained from these investigations below. 

4.1 Qualitative Reports Confirm Study Findings 
In our qualitative research we found a high degree of consistency between the experiences 
reported by individual travelers, the efforts they describe to minimize the impacts of air travel 
delays, and our macro level findings on how air travel delays are affecting the air transportation 
system. Travelers report altering their behavior – sometimes in significant ways – in efforts to 
avoid the most delay-prone parts of the system. Like the airlines, they also report a growing 
tendency to pad travel schedules in efforts to cope with the uncertainty of when they will arrive at 
their destinations. 

4.1.1 Avoiding the Most Delay Prone Parts of the System 
When they must travel, employees attempt to minimize the uncertainty and avoid delays as much 
as possible by selecting alternative flights, modes of transport and airlines.  

One of our significant macro-level findings has to do with the disproportionate role played by 
missed connections as a source of passenger delay. Reports from experienced business travelers 
reflect a high degree of awareness of this phenomenon. Road warriors recommend flying non-
stop whenever possible:  
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Try to schedule your air flight without a layover to prevent the possibility 
of having no problems with the first flight but a travel delay with the 
second flight (Cherrineb, 2009).  

Business travelers also recognize that 

Avoiding the major hubs by using smaller airports will help you to avoid 
flight delays. These secondary airports are mostly less congested and 
therefore they are less prone to flight delays. Avoid the major hubs like 
Chicago O'Hare, New York and Atlanta and book your flights from the 
secondary airports near them whenever possible (Newell, 2009). 

Following this advice, others suggest: 

Avoid airline hubs whenever possible. "Secondary" airports are usually 
less congested and less prone to delays (AOL Travel, 2010).  

Other reports from business travelers are indicative of a high degree of awareness of which parts 
of the system are especially prone to delay, and a willingness to act upon this information. A 
2007 Orbitz for Business Survey found that  

One-third (33 percent) of [the 838 customers] surveyed … opted to travel 
through a smaller regional airport to avoid possible flight delays (Orbitz, 
2007a). 

The timing of flights is also crucial. Road warriors suggest: 

Booking your flight departure during the early morning hours [which] may 
decrease your chances of a flight delay since there is less air traffic from 
nearby airports and the flights can come and go smoothly (Cherrineb, 
2009). 

Business travelers also report an increasing willingness to use alternative modes of transport to 
get them to their destinations. To avoid air travel delays, business travelers are driving and taking 
trains, buses and private jets in lieu of commercial airlines.  

… [W]hen the trip takes four hours or less by car, companies urge 
employees to drive (Ippolito, 2010).  

and employees are listening: 

… [M]ore business travelers are, themselves, opting to drive, citing less 
stress and more productivity (Brooke, 2010).  

In fact,  

11% [of business travelers] are choosing to drive to their destination more 
frequently rather than fly (Orbitz, 2008). 

Other travelers with the means to do so have resorted to flying in private jets: 

http://www.associatedcontent.com/theme/244/chicago.html�
http://www.associatedcontent.com/theme/1819/new_york_state_travel.html�
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As one client summed it up, “Flying privately used to be a luxury, but 
today it’s a necessity.” (Butler, 2008) 

Many clients come to us for the first time after they’ve reached the 
breaking point with the airlines. I can’t tell you how many calls we get 
from new clients who say, “I just had a horrible experience with the 
airlines. I’m not doing that again. What are my options?” (Butler, 2008) 

4.1.2 Personal Schedule Padding 
Passengers, like airlines, are also increasingly building extra time into their schedules.   

Regardless of which airport they are using, almost 70 percent of travelers 
are leaving for the airport earlier than they used to, with nearly 40 percent 
saying they have added an extra 30 minutes to their travel time (Orbitz, 
2007a).  

Furthermore, ensuring a seat on the plane and saving time at the airport, sixty percent of survey 
participants report that they check in before heading to the airport (Orbitz, 2007a).  

Our quantitative analysis found that in delay-prone markets travelers were significantly more 
likely to depart early, even if that meant leaving the night before. Reports from business travelers 
reflect similar behavior. If a meeting is early the next day or particularly important, business 
travelers may need to invest even more of their time by traveling the day before: 

"When I can, I try to arrive the night before," says Russell Hayward, a 
USA TODAY Road Warrior. "But that eats up a whole work day, wasted 
travel time due to airline uncertainty." (Woodyard, 2001) 

However, this strategy raises out of pocket costs:  

Many travelers fly to meetings a day early and pay for an extra night in a 
hotel just to make sure their business appointments stay on schedule.  
(Woodyard, 2001) 

However, given the importance of the travel that is taking place, the practice of departing early 
has become increasingly common:  

Thirty-two percent of [838 Orbitz for Business Survey respondents said]  
…  they now book the earliest flight of the day or travel the night before a 
meeting or appointment, to minimize risk of delays and ensure arrival at 
their destination ahead of time (Orbitz, 2007a). 

Overall, the results of our quantitative and qualitative research appear to be highly consistent. 
Experienced business travelers seem to be generally aware of the phenomena revealed by our 
qualitative analysis.  

4.2 Delays and Unpredictability are Changing the Experience of Air Travel 
The flying experience is not what it used to be. Decades ago, air passengers, dressed up for the 
occasion, viewed the experience of flying as a privilege and a luxury. Things have changed. At 
the present time “the misery of modern air travel [which has taking its toll, as passengers spend 
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more time in less pleasant conditions than ever before] … has de-glamorized the business 
junket.” (Conlin, 2008) Flying is now seen as a necessary evil that has to be endured. Many 
passengers may accept this lower standard of service as a worthwhile sacrifice to obtain cheap 
fares, but as has been shown delays at once degrade the service and increase airline costs. 

Factors contributing to the increasingly negative experience of travelers include flight delays, 
increased security measures, and the degradation of airline service standards. Flight delays have 
extended trip duration, often considerably, and added a dimension of unpredictability to air travel. 
Security measures in place since 9/11 have had the same effect as increased delays - extended 
travel time coupled with increased uncertainty. Relentless financial pressures on airlines have 
resulted in degraded customer service, including the reduction or elimination of in-flight food 
service, reduced flights, smaller aircraft, tighter seating standards and more crowded planes. If a 
passenger misses his scheduled flight, because, for instance, he was stuck in a security line or was 
one of the last to arrive for an over-booked flight, the next available seat could be on a flight 
several hours or several days later. 

The confluence of flight delays, ever increasing security measures, and a succession of economic 
downturns has created an environment in which business travelers, who used to arrive just in time 
to catch their flights, now spend considerable amounts of time waiting in security lines, at gates, 
and on the tarmac both before and after their flights. Confounding the problem even further is the 
unpredictability of air travel.  

Even more than being late, travelers are pestered by uncertainty. If they 
knew they were going be late, early or on time consistently, it would take 
a lot of the bother out of air travel (Woodyard, 2001). 

What all of this means is that when air passengers are delayed, they wind up spending extra time 
– perhaps substantial amounts of extra time – in environments that are far more crowded and far 
less pleasant than was once the case. 

These coping strategies travelers employ in an effort to deal with these realities fall into a number 
of different categories. 

4.2.1 Substitution of Electronic Communications for Travel 

Despite widespread recognition and acknowledgement of the advantages of face-to-face 
interaction, the growing time, uncertainty and overall unpleasantness of air travel seem to be 
stimulating a growing interest in and acceptance of alternatives to travel: 

The super surge in oil prices and resulting spike in airfares is just one 
reason companies are ordering their road warriors home. … HR types also 
have a new appreciation for how the frequent-flier lifestyle can wreck 
executives' health and family lives. And they have come to realize that 
jetting off for a one-hour meeting, while instinctual for corporate strivers, 
is rarely productive… 

So, if managers aren't flying to meetings, what are they doing? Using 
newfangled technology that is finally delivering the kind of Star Trek-y, 
space- and time-shifting experiences that tech executives have blabbered 
on about forever. Videoconferencing, Web-enabled meetings, online 
collaboration tools—all are giving workers the ability to dart around the 
globe from their desk chairs. 
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Take HP's Halo and Cisco's TelePresence technologies, which cost up to 
$300,000 a pop. Chief information officers of big companies say the 
systems usually pay for themselves within nine months (Conlin, 2008). 

A variety of other frequent travelers voice similar sentiments: 

42 percent [of business travelers said they] are exploring alternatives to 
travel, including video/web conferencing (Wilkening, 2008). 

In a subsequent Orbitz for Business survey of 612 respondents 50% … 
said they had tried videoconferencing when asked about alternatives to 
travel (Orbitz, 2008). 

… [T]here are those of us who, tired of traveling several times a month on 
business only to encounter utter incompetence and indifference at the 
airlines - have given up travel and rearranged the meetings as telecons and 
videoconferences. Anything to keep the team working rather than stuck in 
an airport or on the tarmac somewhere (USAToday, 2007).  

4.2.2 Information Strategies 

As the comments reported above indicate, the growing problem of delay doesn’t just make trips 
longer. It also makes them less predictable. In response travelers are seeking out more 
comprehensive and up-to-date information on flight status in order to learn of emerging problems 
in time to respond effectively. One frequent traveler recommends:  

Call your airline carrier three or four days before a major snow storm for 
any information about cancellations/delays. Also, check with your airline 
carrier 3-4 hours before departure to check on your flight status since you 
may miss telephone/e-mail notifications (Cherrineb, 2009).  

Several internet companies are taking advantage of the demand for better and timelier 
information. One particularly geared towards business travelers seeking information to avoid 
delay prone airports and flights is Flight Stats, which “delivers real-time and historical flight 
information that lowers travel-related costs and improves the travel experience.” (Flight Stats, 
2009)  Another, Delaycast, offers predictions for flight delays (Delaycast, 2009).  

These developments suggest that even if it fails to eliminate air travel delays the NextGen 
program might still provide substantial benefits by facilitating the widespread dissemination of 
more timely and accurate information about the status of the air transportation system. Better 
information could make delay easier to live with, and in that way reduce the costs that delay 
imposes on air travelers. 

4.2.3 Productivity Strategies 

As the time required to complete business trips increases, business travelers have focused 
increasing attention on how that time is spent, striving to assure that it is used as productively as 
possible, or at minimum, as enjoyably as the situation permits. 

… the worst uncertainty or delay need not be idle, says personal-
productivity expert Don Wetmore. … 
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Wetmore, a lecturer who makes 70 airline trips a year, says he always 
arrives at the airport ready with enough work to see him through any 
delay. In fact, he says he's learned that being marooned in an airport 
terminal or on a plane can be the most productive hours of the day. 

Stuck at Nashville International Airport one day last month waiting for a 
plane to take him home to Connecticut, Wetmore says, he used the 
uninterrupted 6 hours to write two chapters of his new book, Organizing 
Your Life, to be released later this year. 

"When I get these blocks of time thrown at me, it's a gift if you are 
prepared for it," he says (Woodyard, 2001).  

Another road warrior suggests that travelers:  

[t]ake a favorite book, a crossword puzzle, or work-related materials to 
keep yourself occupied if your flight is delayed for a few hours. Also, take 
a few snacks such as fruit, granola bars, or low-calorie, low-fat chips for 
eating (Cherrineb, 2009).  

As noted by this road warrior, business travelers do not always partake in business activities 
during a delay:   

When stuck in the airport waiting for a flight, … business travelers … pass 
the time … [engaging in various activities.]  59% … [read] a book or the 
newspaper… 21% catch up on work, e-mail, [and/or] phone calls… 8% 
enjoy people watching… 5% go to the bar for a drink… [and] 2% sleep, 
shop or enjoy a meal... (Orbitz, 2007b) 

Not all travelers have these options. A confluence of factors – flight delays and the economy – 
has led to employees having more work to do with less time to do it.  

Doing work during travel time is often a necessity with more time waiting 
in airports meaning less time to take care of work at the office 
(RoadWarriorTips, 2007). 

Increasing travel times are stimulating more concerted efforts to use travel time productively.  
And while electronic communication has become a substitute for air travel, the ubiquity of email, 
phone and internet access has also turned communications into a complement to air travel, 
enabling business travelers to work productively in situations where this would not previously 
have been possible. In this way it has helped to reduce the burden of air travel. Before the advent 
of laptop computers, mobile phones and the internet, passengers had to travel with hard copies of 
everything they needed in transit. Now, with the cooperation of the airport, it is possible for 
passengers to take a virtual office with them: 

In the view of David Stempler, president of the Air Travelers Association 

…a data port is the least an airport can do to make up for what he 
considers unduly long wait times.  
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"We have seen more of a desire for Internet access as people are spending 
more than they might have liked at airports," he says. "We have had so 
many delays ... with people sitting in the airports for so long, that having 
access to e-mail and sports and news has become very desirable and very 
needed."  (Katz-Stone, 2001) 

One road warrior finds these amenities invaluable:  

David Wolf of Annapolis spends 70 percent of his work time on the road. 
He logged 120,000 miles last year as a principal applications architect 
with software firm Sybase, mostly flying out of Dulles International 
Airport. 

In Wolf's world, connectivity is everything. Accessing the Internet "is 
probably the single biggest thing I do when I am at the airport," he says. 
"You get there an hour or an hour and a half before your flight, and that 
ends up being some of your best quiet work time." (Katz-Stone, 2001) 

Another road warrior concurs:  

… [W]ith wireless internet, handheld devices, and a bit of strategy I find 
that airport transit times can be among my most productive (Gary, 2008).  

A further manifestation of efforts to utilize travel time more productively is growing demand for 
access to airport lounges.  According to one commentator: 

For me, there’s a certain Zen to the Admiral’s Club (yes, I fly a lot and I 
fly American). I leave early, usually arriving at least 2 hours before my 
flight.  

Traveling four days a week, but working from a home office, I’m often 
alone in my home office. Thus, the buzz of commerce, people, and energy 
around me has motivated me to close some of the best business deals of 
my life. 

I can say surely that I rarely spend more than ten minutes at the gate 
before boarding, but the time I spend in my little oasis is often the most 
valuable time of my week (Zinger, 2007).  

Some passengers find that airport lounges provide stress-relieving benefits during a delay:  

…another huge perk reveals itself when you need to be rebooked on 
another flight because yours was cancelled or delayed. Would you rather 
stand in line with scores of the bumped and grumped, or go to the club, 
where the lines will be shorter? (Club receptionists are also able to rebook 
flights and assign seats.) And for some, just having enough power outlets 
to charge computers and phones is reason enough to join (Habica, 2007). 

However, the popularity of the lounges has reduced their positive impact: 
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Once a place of sanctuary amid the chaos of a busy airport, the airline 
lounge was originally intended to render the flying experience more 
pleasurable to premium passengers. But these days many lounges are often 
far too busy and crowded for genuine comfort (Lizards, 2006).  

4.3 Implications for Future Policy and Research 
The results of this qualitative research have significant implications for future research into the 
phenomenon of delay, and for the design of policies aimed at solving this significant problem. 

First, these reports from the field highlight the fact that delay is as much a problem of 
unreliability as it is of longer trip times. When the air transportation system is plagued by delay, 
travelers become less able to predict when they will arrive, and so they become less able to plan 
their trips efficiently. The widespread practice of schedule padding demonstrates the significance 
of the problem of unreliability. Travelers are adding significant amounts of time to their travel 
schedules in order to increase their probability of reaching their destinations in time to conduct 
their business.  

Second, these findings suggest that we may begin to see noticeable changes in the way in which 
passengers trade travel time off against cost or other trip attributes. Several findings support such 
a conclusion. Reports from travelers indicate that the quality of the travel experience (especially 
for business travelers) has declined significantly. For this reason alone one might expect to see 
changes in what passengers are willing to pay or do to avoid an additional hour of travel time. In 
addition, as the practice of schedule padding becomes more prevalent, the amount of “hidden” 
time buried in travel itineraries is likely to increase. Traditional analyses of travel behavior that 
consider only the characteristics of the flight actually taken are unlikely to account properly for 
time wasted at the destination because the traveler selected an earlier departure in order to 
increase his chances of arriving in time for a crucial appointment. Conversely, efforts by frequent 
travelers to find new ways of spending travel time productively or enjoyably might decrease the 
“disutility” of travel. To the extent that these efforts are successful, the amount of time needed to 
complete a trip might become less of a concern than it has been in the past. 

Our sense from these investigations is that the nature and extent of opportunities for spending 
travel time productively is evolving rapidly. This change and the other changes discussed above 
suggest that policymakers should exercise caution in extrapolating the results of value of time 
research conducted in the past under substantially different air travel conditions. 

A final implication of this research is that polices aimed at lowering the costs of delay ought to 
consider a range of options. Reducing the amount of delay is vitally important and badly needed. 
At the same time, however, it may be possible to take steps that would make delay easier to live 
with. Information about projected departure and arrival times that is more accurate, more timely 
and more readily available would help travelers to cope more effectively with schedule 
unreliability. Improvements in communications, improved workspaces, and steps to facilitate the 
productive use of travel time would lower the costs associated with scheduling padding and 
extended wait at airports. If some amount of delay and schedule unreliability is likely to remain 
forever with us, we ought to be devoting some thought and effort to assisting travelers in their 
efforts to cope with the effects of delay. 
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5 Public Policy Implications  
The results of this study indicate that air transportation delays impose a large cost on society. The 
obvious implication of this conclusion is that efforts to reduce these costs could certainly be 
worthwhile.  

The most obvious way to do this is to add capacity. The NAS is a queuing system; albeit, a very 
complex queuing system. As such it exhibits the classic queuing behavior that, as demand 
approaches capacity, delays increase at a greater than linear rate. The large delays experienced in 
2007 are a manifestation of this phenomenon. This perspective implies that increases in capacity -
- even modest increases -- can substantially reduce delays. The capacity of the system can be 
expanded in a number of ways. The NextGen initiatives seek to increase NAS capacity. However, 
another large, related investment category consists of infrastructure investment-- most notably, 
runway construction and other airport-capacity-improving activities.  

Of course, one needs to consider carefully how much investment in capacity improvements can 
be justified based on the delay cost estimates provided in the report. In one important respect our 
report understates the case for investments in capacity. Flight demand is expected to grow in the 
coming years so a certain amount of capacity enhancement is required just to keep pace with 
growth. For example, air carrier operations are expected to grow by 30% between 2007 and 2025. 
Comparable capacity enhancement should be required just to keep pace with this growth. Of 
course, this report strongly suggests that capacity enhancement that not only keeps up with 
increases in demand but also leads to some reduction in delay is certainly justified.  

A key question whose answer has major implications for how much we ought to invest in 
capacity improvements is what percentage of the delay (and delay costs) we might reasonably 
expect to eliminate. The history of transportation systems has shown that, as capacity increases, 
demand “materializes” and fills up (and generally saturates) available capacity. Increasing the 
capacity of the system reduces delay, and makes travel easier and faster. The total cost of travel 
goes down as a result, and, in response, demand increases until congestion and delay begin to 
recur. Congestion and delay thus become part of the mechanism that equilibrates supply and 
demand. It is logical to expect that delay reductions produced by capacity enhancements will be 
diminished as result of this mechanism, although they clearly enable more users to share in the 
benefits of the system. 

As has been repeatedly stated in this report, the complete elimination of delay is certainly neither 
a realistic nor an advisable goal. Certain causes of delay, e.g. aircraft mechanical problems, 
passenger-related aircraft loading delays, etc., will not be affected by NextGen technologies or by 
infrastructure improvements and are likely to remain with us into the foreseeable future. And 
while NextGen has a goal of eliminating or drastically reducing the difference between good 
weather and poor weather airport arrival and departure rates, safety considerations will always 
lead to the need to adjust operations and effectively reduce capacity in the advent of certain 
weather events. Some delays occur because of the inability of the system to accommodate 
demands during peak periods. It rarely makes sense to size the system to fully accommodate peak 
period traffic flows, and so there will almost always be some amount of queuing and delay during 
those periods. Finally, it is important to note that there can be tradeoffs between throughput and 
delay. The uncertainty of flight times very often leads to the need to create buffers of arriving 
flights (airborne queues) in order to insure that arrival capacity to an airport is maximized. All of 
these reasons indicate that it is virtually impossible and also undesirable to attempt to eliminate 
all air transportation delay. It is also perhaps safe to say that even eliminating a high percentage, 
e.g 80 or 90%, may be unrealistic. On the other hand, eliminating a larger percentage, e.g. 50 or 
60%, may be a quite reasonable goal. Estimating precisely the percentage of delay reduction that 
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could reasonably be achieved by capacity enhancements represents a challenging research 
question, which was not addressed as part of the TDI research. 

Some delays arise because of externalities that result in inefficient patterns of usage. An operator 
considering the addition of a new flight to a crowded system will take into account the delay it is 
likely to experience, but is unlikely to take into account the delays its flights will impose on other 
users. On the other hand, an operator considering drawing down flights to improve the efficiency 
of its own operations at an airport is highly cognizant of the potential response of other airlines to 
the market opportunities that this would open up for them. This so called “backfill problem” has 
bedeviled efforts to encourage airlines to drawn down schedules voluntarily. The result is levels 
and patterns of system usage that are inefficient in the sense that the benefits enjoyed by some 
users are less than the total costs they impose on the system. Appropriately pricing the ANSP 
services can significantly mitigate this phenomenon and help insure that the benefits of capacity 
enhancements are well used. For example, the ANSP cost of providing services to a flight is 
largely independent of the weight and gauge of that flight. Yet, ANSP fees and/or taxes implicitly 
or explicitly decrease with weight and/or number of passengers. Since existing charges favor 
smaller aircraft, charges that better reflect costs would tend to encourage the use of larger aircraft 
and better utilization of available capacity (from a passenger throughput perspective). Likewise, 
mechanisms that restrict airport demand, such as slot controls and congestion pricing, represent 
approach to insuring airport capacity is not saturated to the extent that excessive delays result.   

In fact, slot controls exists at virtually all major European airports but are relatively rare in the US 
(currently formal slot controls exist at the three NY airports:  EWR, JFK and LGA and at Reagan 
National (DCA); certain limitations also exist at Chicago O’Hare (ORD)). Recent research at 
MIT has shown that slot levels at the US slot-controlled airports are generally set to higher values 
when compared to similar European airports (some of these could be explained by weather 
differences). Natural questions to ask then are whether slot controls should be used more widely 
in the US and whether the associated caps on the number of operations at existing slot-controlled 
airports should be reduced.  

One can view the decision on setting the appropriate level of operations as trading off two cost 
components. The first is the passenger delay against schedule (PDS). This is the classical queuing 
delay, which increases as the number of scheduled operations approaches system capacity. The 
second includes several costs that increase as the level of operations decreases. One component 
we have estimated is capacity-induced schedule delay. That is, setting caps on operations is 
equivalent to instituting an artificial capacity constraint. As this report has shown such constraints 
force the movement of flights to less desirable time slots, leading to increased schedule delay. An 
extension of this impact for more severe restrictions is an overall decrease in the number of 
scheduled flights and a decrease of the frequency of service offered in a market. A somewhat 
different but potentially quite significant effect is a reduction in the level of competition in certain 
city-pair markets. For example, as the number of slots available to a carrier at a particular airport 
decreases, that carrier might decide to eliminate service in certain markets. Such a move would 
reduce the number of carriers offering service in those markets and thus afford greater market 
power to the remaining ones.  In the case where a single carrier remained, that carrier would be 
able to charge a premium for its services, which would impose an obvious extra cost on 
passengers. While we have not carried out a complete analysis of these cost components and the 
rate at which they change, it should be noted that our estimate of total capacity induced schedule 
delay ($718 million) is dwarfed by our estimate of passenger delay against schedule directly due 
to delayed flights ($4,699 million). This would seem to provide some evidence that reducing the 
level of operations, e.g. through tighter slot controls, should have a positive benefit, despite 
potential fare changes. Certainly, a more careful analysis of this topic is warranted. Nonetheless, 
the results of this study certainly suggest that policies and mechanisms that limit the level of 
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operations at airports should be considered in concert with capacity enhancements to insure 
effective use of new capacity in order to reduce flight delay and its associated costs. 
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